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One-Semester Weekly Course Schedule

As discussed in the Preface to the text, I use this text as the basis for a one-
semester course that covers most of Chapters 2 through 8. Not every theorem
and proof is presented in class. Below is an outline of a weekly schedule that
I followed in a recent semester at Georgia Tech. A detailed, annotated list of
the definitions, lemmas, theorems, etc. that were presented appears later in
this guide.

ONE-SEMESTER WEEKLY OUTLINE:
CHAPTERS 2–8

This outline is based on the standard U.S. system of three 50-minute lectures
or two 75-minute lectures per week. Below, “n.n” refers to “Section n.n” of
the main text.

Week 1: 2.1, 2.2 through closure under countable unions

Week 2: Finish 2.2, begin 2.3 through continuity from above and
below

Week 3: Finish 2.3, cover 2.4 (basics of existence of nonmeasurable
sets only)

Week 4: 3.1, 3.2, 3.3

Week 5: 3.4, 3.5 (omit 3.6), begin 4.1

Week 6: Finish 4.1, cover 4.2, 4.3

Week 7: 4.4, 4.5

Week 8: 4.6, 5.1
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Week 9: 5.2, briefly cover 5.3–5.5 as indicated in detailed guide

Week 10: 6.1, 6.2, 6.3

Week 11: 6.4 (omit 6.5, 6.6), 7.1

Week 12: 7.2, 7.3, 7.4, 8.1

Week 13: 8.2, 8.3, 8.4

A pretty fast pace is required to cover all of the material above (though,
as noted in the detailed guide that follows, I do expect students to read the
text, and so I do not present every single item from the text in class).

Many variations are possible. For example, if an instructor prefers to
present Chapter 1 or the online Alternative Chapter 1 in class, then some of
the later chapters could be omitted. Alternatively, by covering only Chapters
2 through 6 or 2 through 7, the material could be presented at a slower pace
or with more details than are indicated in this schedule.



Guide for a One-Semester Course

This guide shows what I usually cover when I use this text for a one-semester
course. Additionally, the guide contains extra comments on the results, along
with some alternative proofs and extra problems. Most of these comments
are aimed at the instructor, but they may also be useful to students in the
course or for readers who are using the text for self-study.

For the instructor, the outline below is only offered as a rough guide.
You should adjust, add, subtract, deviate, substitute, or completely ignore
my comments as you see fit, depending on your feelings for what is important
and taking into account the background and preparation of your particular
audience. I often make adjustments to this outline, especially since I usually
assign different problems for homework each time I teach it. Topics that
students have seen in homework might not need to be covered in class—or
perhaps once the students have had a taste of a topic in the homework then
it may actually be better to spend more time on it in class, perhaps delving
into further details or related results.

It is not possible to present every result in the text in class. The instructor
will need to make some choices as to what should be stated and proved in
class versus what can be stated without proof or simply skipped. I give my
suggestions for these choices, but each instructor will no doubt have their
own preferences.

For the student, it is not necessary to read this guide, but the extra
discussion, notes, and extra problems may provide some help (or hopefully
at least a little amusement).

Exercises and Problems. Many exercises and problems appear in each
section of the main text. The Exercises are directly incorporated into the
development of the theory in each section, while the Problems given at the
end of each section provide further practice and opportunities to develop
understanding. This guide also contains some Extra Problems that are not
included in the main text.
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Textbook website. This guide and additional online resources for the
text are available at the author’s webpage:

http://people.math.gatech.edu/∼heil/real

Extra resources include:

• Handout: “A Short Review of Cardinality.”

• Chapter 0, containing a greatly expanded discussion of the material
that is briefly covered in the Preliminaries section of the text.

• Alternative Chapter 1, containing a greatly expanded discussion of
the material that is covered in Chapter 1 of the text.

• Chapter 10, a bonus chapter covering abstract measure theory.

• Selected Solutions for Students, containing a worked solution to
roughly one problem or exercise from each section of the text.

• An Errata List for the main text.

Disclaimer. The material in this guide has not been proofread as care-
fully as has the text proper, so there is a greater probability of errors here
than in the main text. Please send comments and corrections to me at the
email address “heil@math.gatech.edu”. I will periodically update and cor-
rect this online guide. Unfortunately I cannot update the printed text, but I
will maintain an errata list on my website.

NOTES. Within these comments, there are some “asides” prefixed by
“Note:”. These are usually just side remarks for the instructor about some-
thing that I find interesting but which is not part of the mainstream de-
velopment of the course. Some of the remarks are extensive and may give
alternative proofs or interesting extra results, but most of the extra material
is not meant to be presented in class.

EXTRA PROBLEMS. In the outline below, after the comments for a
given section I sometimes list some extra problems for that section that did
not make it into the text. There is no particular rhyme or reason to these
problems—some were too easy and a few too difficult to include, some just
did not seem to fit (especially given that there are a lot of problems in the
text already), and some are problems that I only recently came across (and
may not even have worked out myself yet!). Some of these extra problems are
quite nice, but some are less interesting. I would certainly like to hear your
suggestions of more good problems that I could include in this guide (email
me at heil@math.gatech.edu).

A Short Remark. The name “Heil” is pronounced “Hi-Ell” (rhymes with
“mile”, “style”, “pile”, and “smile”).
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PRELIMINARIES

The unnumbered Preliminaries chapter in the main text is background
material that I do not present in class. Students should already be familiar
with most of this material, with some exceptions noted below. For the ben-
efit of those readers who would appreciate more detail on the preliminary
material, an expanded version of the preliminaries is available in the online
Chapter 0, which is posted on my website for this text.

The Extended Real Line. Students may not have seen the extended
real line [−∞,∞] before, but they should not have a problem with it as long
as they remember that indeterminate forms need special care.

Extended real values arise naturally in the discussion of measure and in-
tegral. For example, even just considering the measures of sets, there are sets
whose measure is infinite (for example, the entire Euclidean space Rd has
infinite Lebesgue measure). Another situation that we often encounter is an
infinite series of nonnegative functions. If we have functions fn ≥ 0 (meaning

fn(t) ≥ 0 for every n and t), then the series
∞∑

n=1
fn(t) converges for every in-

put t in the extended real sense—it could be infinite, but it either converges

to a finite real number or it diverges to ∞. Hence
∞∑

n=1
fn(t) is well-defined at

every point if we allow it to take extended real values.

The notation F. In many circumstances in analysis, we want to be able
to use either the real line R or the complex plane C as our scalar field. In
these situations, it is not uncommon to use a symbol such as F to denote
a choice of R or C. For example, this notation is used in both [Heil11] and
[Heil18]. However, in this text the natural choice is between the extended real
line [−∞,∞] (which some authors denote by R) and the complex plane C.
In particular, we want to consider both extended real-valued functions and
complex-valued functions. The extended real line is not even a group under
addition, but it is related to the field R. Hence fields are still the issue, and
this is reason for the choice of the letter “F” in this context. In this text, we
let F denote a choice of either the extended real line R = [−∞,∞] or the
complex plane C.

Note: There is another notion, useful in topological contexts, of the one-

point compactification of R or of C. This is a distinct concept that will not be
used in this text. In particular, for our purposes in analysis, it is not useful
to try to define a “complex infinity” in any way.

Countability. Countability is an important concept that is used through-
out the course. Most students will likely have been introduced to countabil-
ity in an undergraduate real analysis class. However, I often see non-math
graduate students in the class who are well-prepared in most of the other
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background material but have not had much experience with countability.
If your class contains a large number of such students, then it might be a
good idea to give a quick review of countability and uncountability. A short
handout devoted solely to cardinality is available at my website for this text,
and the same material is also available in the online Chapter 0.

Sups and Limsups. Students need to be familiar with suprema, infima,
and convergent sequences. Limsup and liminf also play a very important role
in the course. Not every student is as comfortable with infs, sups, liminfs, and
limsups as I would like, but if they are going to succeed, then they need to be
able to review this on their own (there is some discussion of this material in
the online Chapter 0). Students do not need to be intimately familiar with
limsup/liminf right from the beginning of the course, but they will need to
review the ideas along the way.

Pretest. The next page has a short pretest over the preliminary material.
This may help students determine if they are sufficiently prepared to take
this course. All students should be able to complete this pretest, although
the limsup question may be challenging for some.
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Analysis Preliminaries Pretest

After reading the Preliminaries section in the text, give detailed, rig-
orous proofs of the following statements.

1. If f : X → Y is a function, B ⊆ Y, and {Bi}i∈I is a family of
subsets of Y, then

f−1

(⋃
i∈I

Bi

)
=

⋃
i∈I

f−1(Bi), f−1

(⋂
i∈I

Bi

)
=

⋂
i∈I

f−1(Bi),

and f−1
(
BC

)
= (f−1(B))C.

2. If (xn)n∈N and (yn)n∈N are sequences of real numbers, then

inf
n∈N

xn + inf
n∈N

yn ≤ inf
n∈N

(xn + yn) ≤ sup
n∈N

(xn + yn) ≤ sup
n∈N

xn + sup
n∈N

yn.

Show by example that any of the inequalities on the preceding line can
be strict.

3. If (xn)n∈N is a sequence of real numbers, then

(xn)n∈N converges in

the extended real sense
⇐⇒ lim inf

n→∞
xn = lim sup

n→∞
xn,

4. If cn ≥ 0 for every n and
∞∑
n=1

cn <∞, then

lim
N→∞

( ∞∑

n=N

cn

)
= 0.
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CHAPTER 1: METRIC AND NORMED SPACES

Metrics and norms appear throughout the text—occasionally in Chapters 2
through 6, and frequently in Chapters 7, 8, and 9. Metrics and norms are
reviewed in Chapter 1. This material is usually covered, at least to some
extent, in an undergraduate real analysis class, although some students may
only have seen these ideas in the setting of the Euclidean space Rd, rather
than in abstract metric spaces and normed spaces.

One option (especially for better-prepared classes) is to assign Chapter 1
as background reading, and then just briefly discuss issues related to metrics
or norms when they actually come up in the text. Alternatively, it may make
sense to use this background on metric spaces and normed spaces as the
introduction to the course. In that case, Chapter 1 covers enough background
material that the rest of the text is essentially self-contained.

However, the presentation in Chapter 1 is very compressed. It summarizes
the needed material, but does not explain or motivate it, and only a few
problems are included. Therefore, an Alternative Chapter 1 is available
in the online resources for this text. It provides much more detailed coverage.
This alternative chapter provides a comprehensive review of normed spaces
and related topics, and it does so with discussion, motivation, examples, and
problems. Thus, if the instructor decides to present this material in class, it
may be more beneficial to base the presentation on Alternative Chapter 1.

Remarks on Section 1.4. Hölder continuity will play only a limited role
in the text, but Lipschitz continuity will appear more often, especially in
Chapters 5 and 6. Lipschitz continuity is briefly reviewed in the main text in
the places where it comes up.

Pretest. For instructors that are assuming at least some familiarity with
Chapter 1, the next page has a potential short pretest on that material.
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Metrics and Norms Pretest

After reading Chapter 1 in the text, give detailed, rigorous proofs of
the following statements.

1. If E is a subset of a metric space X, then E is closed if and only if
the following statement holds:

If xn ∈ E and xn → x ∈ X, then x ∈ E.

2. If {xn}n∈N is a sequence in a metric space X, then xn → x if
and only if for every subsequence {yn}n∈N of {xn}n∈N there exists a
subsequence {zn}n∈N of {yn}n∈N such that zn → x.

3. If X is a normed space, then each open ball Br(x) is an open,
convex set in X.

4. Determine, with proof, whether the following statements are true
or false.

(a) f(x) = x2 is uniformly continuous on R.

(b) f(x) = sinx2 is uniformly continuous on R.

(c) If fn(x) = x/n then {fn}n∈N converges uniformly on R.

(d) If f ∈ C0(R) then f is uniformly continuous.

5. (a) Given functions fn ∈ Cb(R), explain precisely what the state-
ment ∞∑

n=1

fn converges in Cb(R)

means.

(b) Exhibit functions fn ∈ Cb(R) such that
∞∑

n=1

fn converges in Cb(R).

(c) Exhibit functions fn ∈ Cb(R) such that
∞∑
n=1

fn does not converge

in Cb(R).
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CHAPTER 2: LEBESGUE MEASURE

This is where the course really begins. The notes below outline what I
usually try to cover in class for a one-semester course. You should adjust
as appropriate for you and your class. I cover most (though certainly not
all) of Chapters 2–8 in one semester, but unfortunately must usually leave
Chapter 9 as “bonus material” that I hope the students will read on their
own.

For presentation in a single semester the pace needs to be fast (perhaps
not so much for the instructor who has taught this material for years, but
it is certainly fast for the student who has never seen it). As noted in the
outline below, I do not present every fact from the text or every proof in
class. Often I prove only one direction of an if and only if theorem in class, or
only certain parts of a theorem that has multiple parts. That does not mean
that I just breeze through the material—rather, I try to focus my time on
the concepts that especially need my explanation in class, knowing that the
text has additional details and discussion. I expect the student to be diligent
and to read the text for further discussion, examples, proofs, problems, and
so forth.

Comments on Chapter 2’s Introduction

One point that I’m trying to make in the introduction to Chapter 2 is that
as we progress through the course we will see many “obvious” facts that we
will prove are true, but nearly as many “obvious” facts that we will prove are
false. Here, it seems obvious that we should be able to construct a measure
that satisfies all of properties (i)–(iv) for all subsets of Rd, yet the Axiom of
Choice (which seems to me to be a perfectly reasonable axiom!) implies that
we cannot do so.

Aside from the existence of nonmeasurable sets, the Axiom of Choice is
rarely mentioned in the remainder of the text. I usually say a few words in
class about what the Axiom of Choice is and why it is “reasonable”, but I
keep it brief. There is some discussion of the Axiom of Choice in the text
at the beginning of Section 2.4, just before the proof of the existence of a
nonmeasurable set.

Note: For one “obvious” fact that is still an open problem in analysis,
see the discussion of the HRT Conjecture in the comments following the
instructor’s guide material relating to Section 8.4.
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Section 2.1: Exterior Lebesgue Measure

2.1.1 Boxes

I have to admit that Subsections 2.1.1 and 2.1.2 are not particularly excit-
ing. Unfortunately, before we can get to the interesting material, we do have
to establish some machinery involving boxes. Most of the results presented
here are “obvious” facts that are indeed true, such as the fact that if we sub-
divide a box into finitely many smaller boxes, then the sum of the volumes
of the small boxes equals the volume of the original box (see Lemma 2.1.6).
Moreover, the proofs of these facts are essentially straightforward, albeit often
tedious, calculations. Therefore I only state these beginning results in class
(as detailed below), and tell the students that they should read the proofs
in the text, or work them out on their own. The more interesting stuff is
coming soon! As soon as we get to Subsection 2.1.3 (the definition of exterior
measure), I start giving proofs in class.

Definition 2.1.1 (Boxes). State.

Note: We could have allowed degenerate boxes (where ai = bi for some i) if
we like; in that case we would have to make corresponding changes throughout
the text but would end up with the same theorems. Personally I prefer my
boxes to be nondegenerate.

Definition 2.1.2 (Nonoverlapping Boxes). State.

Notation 2.1.3 (Countable Collections of Boxes). State.

Note: A countable collection of infinitely many nonoverlapping boxes
{Qk}k∈N indexed by the natural numbers cannot always be put into “in-
creasing order,” where we always have Qj to the left of Qk when j < k. If we
could do this, then we could write Qk = [ak, bk] where

a1 < b1 ≤ a2 < b2 ≤ a3 < b3 ≤ · · · . (2.A)

For example, consider the collection
{
[ak, bk]

}
k∈N

where [a1, b1] = [1, 2] and

[a2, b2] =
[
0, 12

]
, [a3, b3] =

[
1
2 ,

2
3

]
, [a4, b4] =

[
2
3 ,

3
4

]
,

and so forth. These boxes are nonoverlapping, and equation (2.A) does not
hold. As long as we require the index set to be the natural numbers, there is
no way to relabel the boxes so that equation (2.A) does hold.

Definition 2.1.4. State.

2.1.2 Some Facts about Boxes

Lemma 2.1.5. This result is often proved in undergraduate real analysis
classes, so I only included the proof in the text for the sake of completeness.
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I usually state the lemma and give some quick motivation for its proof via a
picture on the board, but I assign the proof itself for reading.

Lemma 2.1.6. The basic philosophy here is that anything that should be
true about finitely many boxes probably is true, especially if it only involves
volume. When it comes to measure or infinitely many boxes then the situa-
tion may very well be more complicated! However, boxes and their volumes
are “straightforward” (although the calculations may be tedious). State this
lemma, but assign the proof as reading.

Exercise 2.1.7. This exercise will be used later, so it is worth stating. How-
ever, it again fits the philosophy that volumes of finitely many boxes are

“well-behaved,” and the reader should not get bogged down trying to prove
this exercise. The interesting things start with the next definition, which
introduces exterior Lebesgue measure.

TYPO in the text: the word “nonoverlapping” should be removed from
the hypotheses of Exercise 2.1.7. The result is true even if the boxes overlap,
and in fact we do need this more general fact when we apply the exercise in
the proof of Theorem 2.1.17.

2.1.3 Exterior Lebesgue Measure

Definition 2.1.8 (Exterior Lebesgue Measure). Motivate and state.

Note: What happens if we use covers by finitely many boxes instead of
countably many boxes? This is addressed below in this Instructor’s Guide;
see Extra Problem 3 below in Section 2.2.

Lemma 2.1.9. State. There isn’t a proof to give here, as these are simply
immediate consequences of the definition of an infimum. This is a good op-
portunity to advise the students that if these facts about an inf are not clear
to them (and hopefully immediately clear), then they will have considerable
difficulty in the rest of the course.

Example 2.1.10. Omit. There isn’t time to cover every detail or remark in
class; students should be reading the text in addition to listening to lectures.

Lemma 2.1.11. State. No proofs have been done so far, it’s time to start. I
usually prove part (d), and perhaps give a short sketch of the ideas behind
the proof of parts (a) or (b).

Remark 2.1.12. Omit.

Theorem 2.1.13 (Countable Subadditivity). State and prove.

Definition 2.1.14 (Limsup and Liminf of Sets). State. Although this
definition may seem somewhat esoteric at first glance, the characterization
given in Exercise 2.1.15 is what makes it useful.

Note: By applying De Morgan’s Laws, it follows that
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(
lim sup
k→∞

Ek

)C

=

( ∞⋂
j=1

( ∞⋃
k=j

Ek

))C

=
∞⋃
j=1

( ∞⋂
k=j

EC
k

)
= lim inf

k→∞
EC

k .

Exercise 2.1.15. State. We will use this exercise several times in coming
proofs.

Exercise 2.1.16 (Borel–Cantelli Lemma). State. The proof is a nice
exercise for the student. We will use this result in later proofs, although not
as often as the characterizations given in Exercise 2.1.15.

2.1.4 The Exterior Measure of a Box

Theorem 2.1.17 (Consistency with Volume). State and prove. The idea
of the proof is that we want to reduce to a situation that involves volumes

(not measures) of finitely many boxes, because we can then use the machinery
developed earlier regarding volumes of finitely many boxes. To reduce to
finitely many we make use of the fact that a box is compact, so if we cover
it with open sets then that cover can be reduced to a covering by finitely
many of those sets. We have a covering by closed boxes, so to get open sets
we fatten up each of the boxes a little to get a covering by open boxes.

This is a good place to (again) observe that students do need to have
adequate background knowledge of undergraduate real analysis. In particular,
they need to know the topological definition of a compact set, not just that
a subset of Rd is compact if and only if it is closed and bounded.

Remark 2.1.18. Omit.

Corollary 2.1.19. I like to prove this, but it’s not strictly necessary.

Note: The fact that the measure of Rd is infinite is not that easy to to prove
directly from the definition of exterior measure. We easily get the inequality
|Qk|e ≤ vol(Qk) from the definition of exterior measure, and the inequality
|Qk|e ≤ |Rd|e from monotonicity. However, these facts alone do not give us
any information about the value of |Rd|e. With Theorem 2.1.17 we see that
|Qk|e = vol(Qk), and then we can see that |Rd|e = ∞.

Exercise 2.1.20. State.

Lemma 2.1.21. State and prove.

Corollary 2.1.22. Omit.

2.1.5 The Cantor Set

Example 2.1.23 (The Cantor Set). Many students will have seen the
Cantor set in an undergraduate analysis class, but not all, so it is worth
giving the construction. It is a remarkable set!

Exercise 2.1.24. State.
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Note: If x is in (0, 1/3), then x belongs to F1 and we have d1 = 0 (see
Figure 2.A). If x ∈ (1/3, 2/3), then x does not belong to F1 and d1 = 1. If
x ∈ (2/3, 1), then x belongs to F1 and d1 = 2. The point x = 1/3 has two
ternary expansions, one of which is 0.0222 . . . , which has d1 = 0. The point
x = 2/3 has two ternary expansions, one of which is 0.2000 . . . , which has
d1 = 2.

Fig. 2.A The first digit d1 of the ternary expansion of x is d1 = 0 if x lies in the red
interval, d1 = 1 if x lies in the blue interval, and d1 = 2 if x lies in the green interval.

Note: Some non-math students may not be very familiar with the concept
of uncountability, even though they may have sufficient familiarity with the
other background material. A handout on countability is available on my
webpage for this text, and additionally there is a section on countability in
the online Chapter 0 (which provides an expanded version of the notation
and preliminaries for the text). These are available at

http://people.math.gatech.edu/∼heil/books/real

Exercise 2.1.25. State.

Example 2.1.26 (The Fat Cantor Set). This is a fun example, so I usually
sketch the construction.

Students often assume that any set that has positive measure must contain
an open ball, but this just isn’t true:

There exist sets that have positive measure

but contain no open balls!

There is an easy counterexample, namely the set of irrationals in [0, 1]. This
set has measure 1 and contains no intervals. On the other hand, the set of
irrationals is not a closed set, and the big surprise provided by the fat Cantor
set is that there exist closed sets that have positive measure and contain no

intervals !

Note: The Cantor set corresponds to the choice an = 3−n. If we take
an = 2−3n, then |P |e = 2/3.

2.1.6 Regularity of Exterior Measure

Theorem 2.1.27. State and prove.

Corollary 2.1.28. Omit.

Extra Problems for Section 2.1
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1. Let S be the set of irrationals in [0, 1]. Prove that S has positive exterior
Lebesgue measure but S contains no open intervals.

2. In the construction of the Cantor set, each set Fn is a union of finitely
many closed intervals, so Fn has only finitely many boundary points. Taking
all n into account, it follows that only countably many of the points in the
Cantor set are boundary points of some Fn. Does the point x = 1

4 belong to
the Cantor set? Is x = 1

4 a boundary point of any of the sets Fn?

3. Let S = (0, 1)2 be the open unit square in R2. Prove that there does not
exist a collection of disjoint open balls {Bi}i∈I whose union is S.

Hint: Fix j ∈ I, and prove that Bj and S\Bj are both open and nonempty.
This contradicts the fact that S is connected. Note: Except for the fact that
intervals in R are connected, connectedness is not otherwise used in the main
text.

4. Prove that if a set E ⊆ Rd has nonempty interior, then |E|e > 0.
Note: The converse does not hold in general, see Problem 2.2.42, or Extra

Problem 1 above.

5. Suppose that U is an open, bounded subset of the real line, and let U be
its closure. Must U \U be countable?

6. Show that the definition of exterior Lebesgue measure is unchanged if we
replace coverings by countably many boxes with coverings by countably many
cubes (still with edges parallel to the coordinate axes).

7. Show that the definition of exterior Lebesgue measure is unchanged if we
replace coverings by countably many boxes with coverings by countably many
open boxes (where an open box is the interior of a box).

8. Suppose that a set A ⊆ Rd satisfies |A ∩ Q|e ≤ |Q|/2 for every box Q in
Rd. Prove that |A|e = 0.

9. Let {Ek}k∈N be a sequence of subsets of Rd, and let

E = lim sup
k→∞

Ek =
∞⋂
j=1

( ∞⋃
k=j

Ek

)
.

Prove that
lim sup
k→∞

χEk
(x) = χE(x), for all x ∈ Rd.

Does the analogous statement for liminf hold?

10. (From Stein and Shakarchi). For each irrational number x, it can be
shown that there exist infinitely many fractions p/q with p and q relatively
prime such that

∣∣x − p/q
∣∣ ≤ 1/q2. Let E be the set of all x ∈ R for which

there exist infinitely many fractions p/q with p and q relatively prime such
that ∣∣∣x− p

q

∣∣∣ ≤ 1

q3
. (A)
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Prove that |E|e = 0. Show also that the exponent 3 can be replaced by 2+ ε.
Hint: Borel–Cantelli.

11. Let (φk)k∈N be a sequence of positive integers such that
∑∞

k=1 k
2 φ2k <∞.

Let A be the set of all points (x, y) ∈ R2 for which there exist infinitely many
k ∈ N such that |(x, y) − (j/k, ℓ/k)| < φk for some j, ℓ ∈ Z. Prove that
|A| = 0.

Hint: Fix N ∈ N, and let AN be the set of all points (x, y) ∈ [−N,N ]2 for
which there exist infinitely many k ∈ N such that |(x, y) − (j/k, ℓ/k)| < φk
for some j, ℓ ∈ Z.

Section 2.2: Lebesgue Measure

2.2.1 Definition and Basic Properties

First paragraph TYPOS: The first paragraph of Section 2.2 has some
minor typos. A better wording of the paragraph is as follows.

To motivate the definition of measurability, suppose that U is an
open set that contains a set E and satisfies |U |e ≤ |E|e + ε. As we
observed above, we do not know whether |U |e and |E|e + |U \E|e will
be equal. If it were the case that these quantities were equal, then
|E|e + |U \E|e = |U |e ≤ |E|e + ε. As long as E has finite measure, this
implies that |U \E|e ≤ ε. The “measurable sets” are precisely the sets
for which this inequality can be achieved. Here is the explicit definition.

Definition 2.2.1 (Lebesgue Measure). Motivate and state. I often draw
a picture on the board. Figures 2.B and 2.C give sample one-dimensional and
two-dimensional illustrations, respectively.

Fig. 2.B One-dimensional picture: If a set E (blue) is measurable, then for every ε > 0
there exists an open set U (black) that contains E such that the “annulus” U \E satisfies
|U \E|e ≤ ε.

Note: When writing on the board, a standard abbreviation for “measur-
able” is m©, the letter “m” with a circle around it.
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Fig. 2.C Two-dimensional picture: A set E (red) is measurable if for every ε > 0 there is
an open set U (green) that contains E and satisfies |U \E|e < ε. The set E pictured here
is a nice connected set, but in general E could be any measurable set.

Note: The following argument, which shows that Lebesgue measure is not
additive on arbitrary sets, will be presented in Section 2.4, but it could be
appropriate to go ahead and give it now.

Suppose that E ⊆ Rd is not measurable. Then there exists an ε > 0
such that no matter what open set U ⊇ E that we choose, we will have
|U \E|e > ε. On the other hand, Theorem 2.1.27 implies that there is at
least one open set U ⊇ E that satisfies |U |e ≤ |E|+ ε. By subadditivity,

|E ∪ (U \E)|e = |U |e ≤ |E| + ε.

Now, E and U \E are disjoint. Yet, since |U \E|e > ε, we have

|E|e + |U \E|e > |E|e + ε.

Therefore
|E ∪ (U \E)|e 6= |E|e + |U \E|e,

even though E and U \E are disjoint! Consequently, if nonmeasurable
sets exist (which in Section 2.4 we will see is a consequence of the Axiom
of Choice), then external Lebesgue measure is not additive on disjoint
sets in general.

Notation 2.2.2. State.

Lemma 2.2.3 (Open Sets are Measurable). State and prove.

Lemma 2.2.4 (Null Sets are Measurable). State and prove.

Theorem 2.2.5 (Closure Under Countable Unions). State and prove.

2.2.2 Towards Countable Additivity and Closure under
Complements
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Corollary 2.2.6 (Boxes are Measurable). State and prove. The point
here is that we can write Q = Q◦ ∪ ∂Q, and we know that Q◦ is measurable
because it is open and ∂Q is measurable because it has measure zero—but we
cannot extend this argument to arbitrary closed sets because the boundary
of a closed set need not have measure zero in general (consider the fat Cantor
set!).

Lemma 2.2.7. (Separated Sets.) State and prove. I find this result quite
attractive. It states that exterior measure is additive for arbitrary separated

sets. Hence additivity can fail only when the distance between two sets is
zero. Even then, we will prove later that additivity holds if the two disjoint
sets are both measurable.

Note: In the proof, some of the boxes intersect A, and those become part
of the subsequence {QA

k }, and likewise some intersect B. There can also be
boxes that do not intersect either of A or B, which is why

∑

k

|QA
k | +

∑

k

|QB
k | ≤

∑

k

|Qk|

is an inequality instead of an equality.

Note: Figure 2.4 in the text gives a two-dimensional illustration that if the
sidelengths of the boxes Qk are small enough, then each box can intersect
at most one of A or B. A one-dimensional version of this idea is shown in
Figure 2.D below.

Fig. 2.D Two sets A and B in R are separated by a positive distance d. A box Qk whose
length is less than d cannot intersect both A and B.

Corollary 2.2.8. State. Perhaps briefly discuss the fact that disjoint compact
sets are separated, while the distance between two disjoint closed sets can be
zero (compare Problem 2.2.31).

Theorem 2.2.9 (Compact Sets are Measurable). State and prove. A
picture on the board is helpful for motivating the proof. The boxes Qk, and
hence the sets RN , are contained in the “annulus” U \F. Figure 2.E gives a
sample illustration for the one-dimensional setting (although I usually draw
a two-dimensional version on the board).

Corollary 2.2.10 (Closed Sets are Measurable). State and prove.
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Fig. 2.E An open set U (black) surrounds a compact set F (blue), and nonoverlap-
ping boxes Q1, . . . , QN (red) are contained in U \F. The compact set RN is the union of
Q1, . . . , QN .

Theorem 2.2.11(Closure Under Complements). State and prove. I
usually draw an illustrative figure on the board, showing E, EC, Uk, and
Fk = UC

k . The fact that EC\UC
j = Uj \E can be illustrated by a Venn

diagram similar to the one that appears in Figure 2.F.

Fig. 2.F Venn diagram: The shaded green region is B\A, which equals AC \BC.

Corollary 2.2.12 (Closure Under Countable Intersections). State.
This is an immediate consequence of De Morgan’s Laws.

Corollary 2.2.13 (Closure Under Relative Complements). State.

Definition 2.2.14 (Sigma Algebra). State. The similarities and differences
between topologies and σ-algebras could be mentioned here.

Note: The assumption that Σ is not empty implies that some subset E of
X belongs to Σ. Consequently EC ∈ Σ since Σ is closed under complements.
Therefore X = E ∪ EC ∈ Σ, and also ∅ = XC ∈ Σ.

2.2.3 Countable Additivity

Lemma 2.2.15. State and prove. A picture is useful for this proof as well,
see Figure 2.G.
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Fig. 2.G E\F = FC\EC is the “annulus” between F and E.

Note: Problem 2.2.43 discusses the related concept of the inner measure

of a set. In particular, that problem shows that if a set A has finite exterior
measure, then A is measurable if and only if its exterior measure and inner
measure are equal (but this can fail for sets whose measure is infinite).

Theorem 2.2.16 (Countable Additivity). State and prove.
The idea of Step 1 of the proof is that if our countably many disjoint

sets Ek are all measurable and bounded, then inside each Ek we can find
a compact Fk that is “almost” all of Ek. We proved earlier that Lebesgue
measure is additive on finitely many disjoint compact sets, so

|F1 ∪ · · · ∪ FN | = |F1| + · · · + |FN |.

Letting N go to infinity, we see that the measure of ∪Fk (which is “almost
∪Ek”) is

∑ |Fk| (which is “almost
∑ |Ek|”). The proof given in the text

makes these “almosts” precise.
Step 2 uses the σ-finiteness of Rd to extend the proof from bounded sets

to arbitrary sets. This is the first time this type of argument appears in the
text, so I usually present the full proof of Step 2 in class, but after this I
usually assign this type of extension as an exercise for the students to fill in
on their own.

Note: In Step 2, the set Ej
k is measurable because it equals Ek ∩ B1(0)

when j = 1, and equals Ek ∩
(
Bj(0) \Bj−1(0)

)
when j > 1.

Note: In case the student is worried about the double sum that appears
in the proof of Step 2, note that all terms in the summation are nonneg-
ative, so Tonelli’s Theorem for Series applies and allows us to interchange
or reorder the summations as we like. Tonelli’s Theorem for Series is not
explicitly stated until Chapter 4, because it is related to Tonelli’s Theorem
for Lebesgue integrals (see Problem 4.6.23). However, the proof can be done
directly without reference to measure theory. Therefore you can simply state
that the proof that a double sum of nonnegative terms can be reordered is a
fact from undergraduate real analysis that they could try to prove on their
own. Similar results for integrals will be proved in Chapter 4.

Note: Here is an alternative wording of the same proof of Step 1.
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Step 1. Assume first that each set Ek is bounded. By subadditivity
we have ∣∣∣∣

∞⋃
k=1

Ek

∣∣∣∣ ≤
∞∑

k=1

|Ek|,

so our task is to prove the opposite inequality.
Fix ε > 0. By Lemma 2.2.15, there exists a closed set Fk ⊆ Ek such

that
|Ek \Fk| ≤

ε

2k
.

Since Ek is bounded, Fk is compact. Hence {Fk}k∈N is a collection of
disjoint compact sets. Let E =

⋃
Ek and F =

⋃
Fk. Then we compute

that

|E| ≥ |F | =
∣∣∣∣
∞⋃
k=1

Fk

∣∣∣∣

= lim
N→∞

∣∣∣∣
N⋃

k=1

Fk

∣∣∣∣ (continuity from below)

= lim
N→∞

N∑

k=1

|Fk| (Corollary 2.2.8)

=

∞∑

k=1

|Fk|

≥
∞∑

k=1

(
|Ek| −

ε

2k

)
=

( ∞∑

k=1

|Ek|
)

− ε.

Since ε is arbitrary, equation (2.14) follows.

Corollary 2.2.17. State, but omit the proof.

Note: I don’t mention this in the text and usually don’t talk about it in
class either, but here is an application of Corollary 2.2.17. Suppose that E is
a subset of Rd and we can find nonoverlapping boxes Qk and nonoverlapping
boxes Rk such that

⋃
Qk ⊆ E ⊆ ⋃

Rk. Then by applying Corollary 2.2.17 and
monotonicity it follows that

∑

k

|Qk| ≤ |E|e ≤
∑

k

|Rk|.

If we can compute these sums, then by making better and better choices of
boxes we may be able to find the exact measure of E. For example, we could
do this for sets like a triangle,

A =
{
(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ x

}
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or the region under the graph of x2:

B =
{
(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ x2

}
.

Essentially, the idea here is that we can compute the measure of the region
under the graph of y = x or y = x2 by forming Riemann sums, as each
Riemann sum is the Lebesgue measure of a union of finitely many nonover-
lapping boxes. We could continue with this idea and try to relate Riemann
integrals to the Lebesgue measure of the region under the graph of other func-
tions. However, we will develop a better approach to integration in Chapter 4
when we define the Lebesgue integral. Further, the exact relation between the
Lebesgue integral and the Riemann integral will be explored in Section 4.5.5.

2.2.4 Equivalent Formulations of Measurability

Definition 2.2.18 (Gδ-Sets and Fσ-Sets). State.

Example 2.2.19. I usually present the half-open interval example that pre-
cedes this example, but otherwise content myself with encouraging the stu-
dents to read Example 2.2.19 on their own because it has a neat application
of the Baire Category Theorem. (I usually prove Baire Category in the second
semester of this course, so this gives the students something to look forward
to.)

Lemma 2.2.20. State and prove.

Lemma 2.2.21. State, and prove the implication (a) ⇒ (b).

TYPO in the paragraph preceding Exercise 2.2.22: The phrase “open subset
of Rn under f is an open subset of Rm” should be replaced with “open subset
of Rm under f is an open subset of Rn”.

Exercise 2.2.22. State the exercise. Part (a) is a nice application of the
definition of a compact set in terms of open covers, and if your students are
not comfortable with the abstract definition of compact sets, then it might
be worth working out this part in class.

Note: Part (a) is also stated in Chapter 1 as Exercise 1.1.14.

2.2.5 Carathéodory’s Criterion

Carathéodory’s Criterion is an important equivalent characterization of mea-
surability. Its statement does not explicitly involve topology, although topol-
ogy is still involved, hidden in the fact that the definition of Lebesgue mea-
sure involves boxes, which are very special closed sets (and every open set is
a union of countably many boxes).

Note: Figure 2.5 in the text illustrates Carathéodory’s Criterion; a color
version of that figure is given below in Figure 2.H.
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Fig. 2.H A Venn diagram illustrating Carathéodory’s Criterion: In order for E to be
measurable, |A ∩E|e and |A\E|e must sum to |A|e for every set A.

Note: Personally, I feel that the definition of measurability given in Defini-
tion 2.2.1 is more intuitive than Carathéodory’s Criterion, but I have had a
number of discussions with various instructors who feel that Carathéodory’s
Criterion is more intuitive, and so they prefer to use it as the definition of
measurability. I don’t think that there is a “correct” view here—both are
correct, and it just shows that beauty is in the eye of the beholder.

Note: When we deal with abstract exterior measures (covered in the extra
online Chapter 10, available on the website for this text), there need not be
any topology to appeal to, and so in that setting Carathéodory’s Criterion is
the definition of measurable sets.

Theorem 2.2.23 (Carathéodory’s Criterion). State and prove.
The following less cluttered argument can be used for the “⇐” direction

of the proof if E is bounded. Often, I just present the argument below for
bounded sets, and then say that the proof can be extended to unbounded sets
by making use of the σ-finiteness of Lebesgue measure, and students should
refer to the text for the full proof.

⇐. Assume that E is a bounded set that satisfies equation (2.21). Fix
ε > 0, and let U be an open set that contains E and satisfies

|E|e ≤ |U | ≤ |E|e + ε.

Using equation (2.21) and the fact that E = U ∩ E, we compute that

|E|e + |U \E|e = |U ∩E|e + |U \E|e = |U | ≤ |E|e + ε.
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Since |E|e <∞, we can subtract it from both sides to obtain |U \E|e < ε.
Therefore E is measurable.

Here is a variation on the preceding proof for bounded sets, using Gδ-sets
instead of open sets.

⇐. Assume that E is a bounded set that satisfies equation (2.21).
By Lemma 2.2.20, there exists a Gδ-set H ⊇ E such that |H | = |E|e.
Applying equation (2.21) with A = H, we see that

|E|e = |H | = |H ∩ E|e + |H \E|e = |E|e + |H \E|e.

Since |E|e <∞, it follows that Z = H \E has zero exterior measure and
hence is measurable. Therefore E = H \Z is measurable as well.

Here is the extension of this Gδ-set approach to arbitrary sets sets E.

⇐. Let E be any subset of Rd that satisfies equation (2.21). For each
k ∈ N, set

Ek = {x ∈ E : |x| ≤ k},
and let Hk ⊇ Ek be a Gδ-set that satisfies |Hk| = |Ek|e. Applying
equation (2.21) with A = Hk, we have

|Ek|e = |Hk| = |Hk ∩ E|e + |Hk \E|e ≥ |Ek|e + |Hk \E|e.

Since |Ek|e < ∞, it follows that Zk = Hk \E has exterior measure zero
and hence is measurable. The setH =

⋃
Hk is measurable, and Z = H \E

satisfies

Z = H \E =
(⋃

k

Hk

)
\ E =

⋃
k

(Hk \E) =
⋃
k

Zk.

Therefore Z has measure zero, hence is measurable, so E = H \Z is
measurable as well.

2.2.6 Almost Everywhere and the Essential Supremum

Notation 2.2.24 (Almost Everywhere). State.

Example 2.2.25. Discuss.

Definition 2.2.26 (Essential Supremum). State.
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Note: I find it amusing that the abbreviation “esssup” has three s’s in a
row (although a small space is usually inserted between “ess” and “sup”).
Clearly I am easily amused.

Example 2.2.27. State.

Lemma 2.2.28 and Corollary 2.2.29. State, but assign the proofs as
reading.

Exercise 2.2.30. State.

Problems. Note on Problem 2.2.51 in the text: Σ1 ∩ Σ2 is not formed by
intersecting the elements of Σ1 with those of Σ2. That is, Σ1 ∩ Σ2 does not
mean {A ∩ B : A ∈ Σ1, B ∈ Σ2}. Rather, Σ1 ∩ Σ2 is the collection of sets
common to both Σ1 and Σ2. In other words,

Σ1 ∩ Σ2 =
{
A ⊆ X : A ∈ Σ1 and A ∈ Σ2

}
.

Extra Problems for Section 2.2

1. The Heaviside function is H = χ[0,∞). Prove that H is continuous at
almost every point x ∈ R, but there is no continuous function g such that
H = g a.e.

Note: The first time I encountered the Heaviside function, I thought it was
called the “heavy side function,” because it is “heavy on one side.” Later I
learned that it is named after Oliver Heaviside (1850–1925).

2. Using only the results obtained so far in the text, find the Lebesgue mea-
sures of the following subsets of R2.

(a) A = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ x}.
(b) B = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ x2}.

3. Let E = Q ∩ [0, 1], so |E|e = 0. Show that

inf

{ N∑

k=1

|Qk| : E ⊆
N⋃

k=1

Qk

}
= 1,

where we implicitly take the infimum over all finite collections of boxes Qk

that cover E. Note that a box in R is simply a closed finite interval.
Hint: Suppose Q1, . . . , QN cover E, and consider (0, 1)\(Q1 ∪ · · · ∪QN ).

Note: This shows that we cannot replace countable coverings by boxes in
the definition of exterior measure with finite coverings by boxes.

4. Show that the exterior measure of a set E ⊆ Rd is unchanged if we
replace countable coverings by boxes in the definition of exterior measure
with countable coverings by nonoverlapping boxes.
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5. Assume that A ⊆ [0, 1]. Prove that A is Lebesgue measurable if and only
if |A|e +

∣∣[0, 1] \A
∣∣
e
= 1.

6. (a) Thomae’s function f is defined as follows. Set f(x) = 0 if x is irrational,
and also set f(0) = 1. If x is a nonzero rational number, write x = p/q
in lowest terms and define f(x) = 1/q. Show that f is continuous at each
irrational point, and discontinuous at each rational point.

(b) Let {rn}n∈N be an enumeration of the points in Q ∩ (0, 1). Define

g(x) =

∞∑

n=1

2−nχ(rn,∞)(x), for x ∈ R.

Show that g is monotone increasing on R, continuous at each irrational point
x ∈ (0, 1), and discontinuous at each rational point x ∈ (0, 1).

(c) Does there exist a function f : R → R that is continuous at each rational
point and discontinuous at each irrational?

Hint: Consider Problem 2.2.47.

7. Prove there is no measurable set E ⊆ R that satisfies |E ∩ (a, b)| = b−a
2

for all a < b.

8. Let E be a measurable subset of Rd that has finite measure. Suppose that
{Ak}k∈N are disjoint measurable subsets of E that all have the same measure.
What is |Ak|?
9. Suppose that E is a measurable subset of Rd and |E ∩ (E + t)| = 0 for
every nonzero t ∈ Rd. Prove that |E| = 0.

10. Let A be any subset of Rd with |A|e < ∞. Prove that if there exists an
Fσ-set F ⊆ A such that |F | = |A|e, then A is measurable.

11. Assume that A and B are measurable subsets of Rd with finite measure.
Prove that |A△B| = 0 if and only if |A ∩B| =

(
|A|+ |B|

)
/2.

12. Prove that statements (a) and (b) of Problem 2.2.38 in the text are also
equivalent to the following statement:

(c) For each ε > 0 there exists a set S that is a finite union of boxes
and satisfies |E△S|e < ε, where E△S = (E\S) ∪ (S\E) is the symmetric
difference of E and S.

13. Let A be a subset of Rd. Prove that A is measurable if and only if for
every ε > 0 there exists a measurable set E ⊆ Rd such that |A△E|e < ε.

14.* Show that there exists a measurable set E ⊆ [0, 1] with |E| > 0 that has
the property that |E ∩ I| < |I| for every open interval I ⊆ [0, 1].

Hint: See the sketch of the construction that appears in [Rud83] (W. Rudin,
Well-distributed measurable sets, Amer. Math. Monthly, 90 (1983), pp. 41–
42). The important point is that, by Problem 2.2.42, for each interval [a, b]
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there exists a “fat Cantor set” Pa,b ⊆ [a, b] that is closed, has positive mea-
sure, and contains no intervals.

15. Let us say that f : [0, 1] → R is “pretty continuous” if the set of points
where f is continuous is a dense subset of [0, 1]. Show that the sum of two
pretty continuous functions is pretty continuous.

Hint: Problem 2.2.46 shows that the set of continuities of f is a Gδ-set.
The Baire Category Theorem implies that the intersection of countably many
open dense subsets of a complete metric space (such as [0, 1]) is still dense;
see [Heil18, Cor. 2.11.5].

Section 2.3: More Properties of Lebesgue
Measure

2.3.1 Continuity from Above and Below

Lemma 2.3.1. State and prove (easy, the main observation is that you can
subtract if it doesn’t result in an indeterminate form).

Theorem 2.3.2 (Continuity from Below). State and prove. An illustra-
tion of nested increasing sets is shown in Figure 2.I.

Fig. 2.I Venn diagram showing nested sets E1 ⊆ E2 ⊆ E3 ⊆ · · · . Observe that
⋃
Ek is

the union of the disjoint sets E1, E2\E1, E3\E2, . . . .

Note: Here is an alternative (but essentially similar) proof of Theorem
2.3.2.

Suppose that E1 ⊆ E2 ⊆ · · · are measurable. If we set E0 = ∅, then

∞⋃
k=1

Ek =
∞⋃
j=1

(Ej \Ej−1),
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and the sets on the right-hand side above are disjoint. Therefore, by
countable additivity,

∣∣∣∣
∞⋃
k=1

Ek

∣∣∣∣ =

∣∣∣∣
∞⋃
j=1

(Ej \Ej−1)

∣∣∣∣ =
∞∑

j=1

|Ej \Ej−1|

= lim
N→∞

N∑

j=1

|Ej \Ej−1|

= lim
N→∞

∣∣∣∣
N⋃
j=1

(Ej \Ej−1)

∣∣∣∣

= lim
N→∞

|EN |.

Example 2.3.3. State.

Note: A one-dimensional example may be easier to visualize, e.g., consider
the nested decreasing intervals Ek = [k,∞) for k ∈ N.

Theorem 2.3.4 (Continuity from Above). State, but assign the proof
for reading—it is similar to the proof for continuity from above.

Corollary 2.3.5. State, assign proof for reading.

2.3.2 Cartesian Products

Exercise 2.3.6 and Theorem 2.3.7 (Cartesian Products). State the
theorem, discuss the exercise.

This is a very nice exercise for the students to work through, because it
applies continuity from above, the use of Gδ-sets, and other properties of
Lebesgue measure.

Depending on your students, you might consider giving some details on
why it’s not easy to derive the equality |E × F | = |E| |F | directly from the
definition of measure. As discussed in the introduction to Section 2.3.2, it is
fairly easy to derive the |E × F | ≤ |E| |F |. However, the opposite inequality
is not so clear. You might challenge the students to try to find an “easy”
proof that |E × F | ≥ |E| |F |.

The problem is that if {Qk}k∈K is a covering of E×F by boxesQk ⊆ Rm+n

for indices k in some countable index set K, then it is not true that we can
always write

{Qk}k∈K = {Rj × Sℓ}j∈J,ℓ∈L, (A)

where the Rj are boxes in Rm and the Sℓ are boxes in Rn. For a two-
dimensional proof by picture, consider the covering of E × F = [1, 2]× [0, 3]
by the two boxes Q1 = [0, 2]× [0, 2] and Q2 = [1, 3]× [1, 3]. Let K = {1, 2}.
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Can we write {Qk}k∈K as {Rj × Sℓ}j∈J,ℓ∈L? Keep in mind that we must
include every product Rj × Sℓ for all possible choices of j ∈ J and ℓ ∈ L, not
just some of the choices.

It is true that every individual box Qk in Rm+n is a Cartesian product, so
it is true that we can write

{Qk}k∈K = {Rk × Sk}k∈K , (B)

but this doesn’t help because it does not have the form given in equation (A).
When equation (A) holds, we have

|E × F |e ≤
∑

k∈N

vol(Qk)

=
∑

j∈N

∑

ℓ∈N

vol(Rj × Sℓ)

=

(∑

j∈N

vol(Rj)
∑

ℓ∈N

vol(Sℓ)

)

=

(∑

j∈N

vol(Rj)

)(∑

ℓ∈N

vol(Sℓ)

)
,

and then we can take an infimum over all coverings to get |E×F |e ≤ |E|e |F |e
(although we should be careful about cases that involve zero or infinite mea-
sure). However, if all that we have is equation (B), then

∑

k∈N

vol(Qk) =
∑

k∈N

vol(Rk × Sk) =
∑

k∈N

vol(Rk) vol(Sk),

and this is not equal in general to

(∑

k∈N

vol(Rk)

)(∑

k∈N

vol(Sk)

)
,

which leaves us stuck.

2.3.3 Linear Changes of Variable

Example 2.3.8. State that it is not true that a continuous function must
map measurable sets to measurable sets, and assign this example for reading.

Lemma 2.3.9. State and prove. This gives the missing piece: If a continuous
function maps sets with measure zero to sets with measure zero, then it maps
measurable sets to measurable sets.

Definition 2.3.10 (Lipschitz Function). State.
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Note: The Lipschitz constant is not unique, for if K is a Lipschitz con-
stant then so is any K ′ > K. The smallest Lipschitz constant is sometimes
called the optimal Lipschitz constant. The optimal Lipschitz constant defines
a seminorm on the space of Lipschitz functions (it is only a seminorm because
zero is a Lipschitz constant for any constant function). However, by including
an appropriate normalization, the optimal Lipschitz constant can be used to
define a norm on the space of Lipschitz functions which makes that space
into a Banach space (see Problem 1.4.5).

Lemma 2.3.11. State. Assign the proof for reading.

Note: The easy way to show the inequality that is identified as an “exer-
cise” in the multi-line displayed equation in the proof of this lemma is to
use the Cauchy–Schwarz Inequality |x · y| ≤ ‖x‖ ‖y‖ for the dot product of
vectors in Rn, specifically taking y = (1, . . . , 1).

Exercise 2.3.12. State (note that f need not be linear in this exercise). I
usually write out the proof for d = 1 since it is so easy: If K is a Lipschitz
constant for f, then the image of an interval [a, b] must be contained in an
interval of length at most K (b− a).

Suggest that the students determine on their own what goes wrong with
the exercise if f : Rn → Rm is Lipschitz but m 6= n.

Note: TYPO in the statement of this exercise: Since we do not know yet
that f(Q) is measurable, replace “|f(Q)|” with “|f(Q)|e”.

Note: We will consider Lipschitz functions in depth in Chapter 5, but you
could consider giving a few more details about them now. For example, by
using the Mean-Value Theorem we can show that if I is an interval in R and
f : I → R is a real-valued function such that f is differentiable everywhere
on I and f ′ is bounded on I, then f is Lipschitz (the same is true if f is
complex-valued, but the proof is not as straightforward since the MVT need
not hold for a complex-valued function, see Problem 1.4.2). However, not all
Lipschitz functions are differentiable everywhere, e.g., consider f(x) = |x| on
the domain I = (−1, 1).

Note: In Chapter 6 we will explore issues related to the question of when a
function maps sets of measure zero to sets of measure zero. We will see that,
for functions on an interval [a, b], the absolutely continuous functions have this
property, and these are precisely the functions that satisfy the Fundamental
Theorem of Calculus. All Lipschitz functions are absolutely continuous, but
not all absolutely continuous functions are Lipschitz.

Theorem 2.3.13. State and prove.

Note: TYPO in the displayed equation in the proof of this theorem.
Since we do not know yet that f(Qk) is measurable, replace “|f(Qk)|” with
“|f(Qk)|e”.
Corollary 2.3.14. State.
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Note: The case d = 1 is trivial, since any linear function L : R → R has
the form L(x) = cx where c is a constant.

Theorem 2.3.15 (Linear Change of Variables) and Exercise 2.3.16.
State the theorem. A proof is given in Exercise 2.3.16 (which is a very nice
exercise). It may be worth discussing the exercise briefly, but I wouldn’t take
the time to write out every step on the board.

The proof sketched in the exercise is based on the singular value decom-
position (SVD) of a matrix, so it may be appropriate to briefly discuss the
SVD in class The SVD exists for general m × n matrices, although all we
will need here is the SVD for square matrices. For a square matrix, the SVD
states that a d × d matrix can be factored into a product of a rotation or
rotation with flip (the orthogonal matrix V T), a dilation (the diagonal matrix
∆, with different axis directions stretched by different amounts), and another
rotation or rotation with flip (the orthogonal matrix W ). The diagonal part
is especially easy to deal with because diagonal matrices map boxes to boxes.
The rotations do not map boxes to boxes (because we require a “box” to
have sides that are parallel to the coordinate axes), but a rotation does map
the unit ball B1(0) onto itself, which turns out to be very convenient.

I don’t believe that I have seen this SVD approach in other texts. Other
proofs of Theorem 2.3.15 that I have seen typically factor L into a product of
shears. However, this is rather unpleasant because the unit cube Q0 = [0, 1]d

is transformed into a parallelepiped that need not be a box in our sense
(because L(Q0) need not be a rectangular parallelepiped, and even if it is,
its sides need not be parallel to the coordinate axes). Dealing with such sets
is not much fun—just try to give an easy direct proof that the Lebesgue
measure of such a set equals its volume in the usual sense.

Note: An orthogonal matrix is also known as a unitary matrix, although
that terminology is more common when dealind with matrices that have
complex entries.

Note: Problem 2.1.35(c) shows that the measure of any proper subspace of
Rd is zero. If L : Rd → Rd is a singular (not invertible) linear transformation,
then range(L) is a proper subspace of Rd, so Problem 2.1.35(c) can be used
to give a simple proof for case where L is singular. However, if that problem
has not been worked, then a suitable modification of the steps used in the
exercise for the nonsingular case can be made to work for the singular case.
Alternatively, once the nonsingular case has been established, then we know
that rotations are nonsingular linear transformations that preserve measure,
so an arbitrary subspace can be rotated to one that is “parallel to the coor-
dinate axes,” and it is easy to show directly from the definition of exterior
measure that any proper subspace of that form has measure zero (this is
Problem 2.1.36 in the text).

Problems. Note on Problem 2.3.19 in the text: This problem is an appli-
cation of continuity from above and below. However, there is a technicality.
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Continuity from above is stated for sequences of sets indexed by the natu-
ral numbers, not for sequences indexed by a continuous parameter. Problem
1.1.23 can be used to circumvent this. For example, if we have a set Et for
each real number t > 0, then Problem 1.1.23 tells us that

lim
t→0+

|Et| = L

if and only if for each countable sequence of positive real numbers tk → 0 we
have

lim
k→∞

|Etk | = L.

Continuity from above or below can be applied to each sequence {tk}k∈N

independently. This type of technicality arises at a few other points in the
text, and is specifically commented on in Lemma 4.4.9 and Remark 5.2.10.

Extra: Characterizations of Measurability

We collect here most of the characterizations of measurable sets that have
been listed in the text.

Theorem. If E ⊆ Rd, then the following statements are equivalent.

(a) E is Lebesgue measurable. That is,

∀ ε > 0, ∃ open U ⊇ E such that |U \E|e ≤ ε.

(b) For every ε > 0 there exists a closed set F ⊆ E such that |E\F |e < ε.

(c) E = H \Z where H is a Gδ-set and |Z| = 0.

(d) E = H ∪ Z where H is an Fσ-set and |Z| = 0.

(e) Carathéodory’s Criterion: For every set A ⊆ Rd, we have

|A|e = |A ∩ E|e + |A\E|e.

(f) For every ε > 0 there exists an open set U and a closed set F such
that F ⊆ E ⊆ U and |U \F | < ε.

(g) There exists a Gδ-set G and an Fσ-set H such that H ⊆ E ⊆ G and
|G\H | = 0.

(h) For every box Q we have |Q| = |Q ∩E|e + |Q\E|e.

If |E|e <∞, then the statements above are also equivalent to the follow-
ing statements.
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(i) For each ε > 0 we can write E = (S ∪ A) \B where S is a union of
finitely many nonoverlapping boxes and |A|e, |B|e < ε.

(j) For each ε > 0 there exists a set S that is a finite union of boxes
and satisfies |E△S|e < ε, where E△S = (E\S) ∪ (S\E) is the
symmetric difference of E and S.

(k) |A|e = |A|i, where

|A|i = sup
{
|F | : F is closed and F ⊆ A

}
.

Extra Problems for Section 2.3

1. Exhibit a compact subset of R\Q that has positive measure.

2. Extra part for Problem 2.3.24.
(g) If A ⊆ B are compact subsets of Rd and |A| < t < |B|, then there

exists a compact set K such that A ⊆ K ⊆ B and |K| = t.

3. Let A be a measurable subset of Rd with |A| <∞. Fix α > 0, and suppose
that {En}n∈N is a sequence of measurable subsets of A such that |En| ≥ α
for every n. Let E be the set of all points in Rd that belong to infinitely many
of the En. Prove that |E| ≥ α.

4. Given measurable sets En ⊆ Rd for n ∈ N, let lim inf
n→∞

En and lim sup
n→∞

En

be as in Exercise 2.1.15.

(a) Prove that ∣∣∣lim inf
n→∞

En

∣∣∣ ≤ lim inf
n→∞

|En|.

Show that strict inequality can hold.

(b) Prove that if ∪En has finite measure then

∣∣∣lim sup
n→∞

En

∣∣∣ ≥ lim sup
n→∞

|En|.

Show that strict inequality can hold, and show that the inequality can fail if∣∣∪En

∣∣ = ∞.

5. Assume that E ⊆ Rd is measurable, with 0 < |E| <∞. Set

f(t) = |E ∩ (E + t)|, for t ∈ Rd.

Show that f(t) → 0 as ‖t‖ → ∞.

6. This problem gives an alternative approach to proving that Lebesgue mea-
sure is invariant under rotations.
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(a) Given E ⊆ Rd, define

|E|b = inf

{∑

k

|Bk|
}
,

where the infimum is taken over all countable collections of open balls Bk

such that E ⊆ ⋃
Bk. Prove that |E|b = |E|e.

Note: One inequality is easy, the other is not. It is possible to use the Vitali
Covering Lemma (Theorem 5.3.3) to prove the opposite inequality, but can
you give a direct proof? What about an “easy” direct proof? (I don’t know
one, but that doesn’t mean that a simple proof doesn’t exist.)

(b) Prove that Lebesgue measure is invariant under rotations.

7. Let M be a nonempty collection of subsets of a set X. We say that M is a
monotone class if whenever we have sets En, Fn ∈ M such that E1 ⊆ E2 ⊆
· · · and F1 ⊇ F2 ⊇ · · · , then ⋃

En ∈ M and
⋂
Fn ∈ M. Prove the following

statements.

(a) Every σ-algebra on X is a monotone class.

(b) If A is a nonempty collection of subsets of X, then there is a smallest
monotone class M that contains A.

(c) If A is a nonempty collection of subsets of X, if M is the smallest
monotone class that contains A, and if Σ is the σ-algebra generated by A,
then A ⊆ M ⊆ Σ.

(d) The inclusions in part (c) can be proper.

Section 2.4: Nonmeasurable Sets

2.4.1 The Axiom of Choice

Axioms 2.4.1 or 2.4.2 (Axiom of Choice). I usually state Axiom 2.4.2.
Some discussion may be in order. On the one hand, the statement of

the Axiom of Choice is quite reasonable, but on the other hand it also has
many surprising implications, such as the non-additivity of Lebesgue exterior
measure and the Banach–Tarski paradox.

Note: Roughly, Banach–Tarski states the following: It is possible to sub-
divide the unit ball in R3 into finitely many disjoint subsets such that after
we translate, rotate, and union these sets, we obtain two disjoint unit balls.

Note: What happens if we do not accept the Axiom of Choice? Well, other
bad things happen, but I leave it to the reader to research this (try doing a
web search on “Axiom of Choice”).

Note: Some students may not have encountered equivalence relations be-
fore, but they are very intuitive. You might give a simple example; my favorite
is to take the set of all people and declare that two people are equivalent if
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they have the same birthday. With this relation, the equivalence class of x =
you is [x] = the set of all people that share your birthday. Because of Leap
Years, there are 366 distinct equivalence classes for this relation.

2.4.2 Existence of a Nonmeasurable Set

Theorem 2.4.3 (Steinhaus Theorem). State. The proof is interesting
and is a nice application of Problem 2.2.39, but in view of time constraints I
usually assign the proof as reading.

As mentioned in the text, an elegant way to prove the Steinhaus Theorem is
to use the fact that the convolution of a bounded function with an integrable
function is continuous. In particular, if E is measurable and 0 < |E| < ∞,
then the convolution f = χE ∗χ−E is continuous, and its value at the origin is
|E|, which is strictly positive. Hence f is positive on some interval around 0,
and the Steinhaus Theorem follows easily from that (see Problem 4.6.29). If
we want to do this without reference to convolution, it amounts to showing
that f(x) = |E ∩ (E − x)| is a continuous function of x. This approach is
spelled out in Problem 2.4.14, although it is not so easy to do this directly—
that is, using only the results obtained so far in this chapter.

Note: Here is a detailed explanation of the final claim in the proof of
Theorem 2.4.3 that F − F contains the interval

(
− 1

2 |I|, 1
2 |I|

)
.

We have shown that

|t| < 1

2
|I| =⇒ F ∩ (F + t) 6= ∅.

Now fix any t ∈
(
− 1

2 |I|, 1
2 |I|

)
. Then F ∩ (F + t) 6= ∅, so there exists

at least one point x in F ∩ (F + t). That is, x ∈ F and x ∈ F + t, so
x = y + t for some y ∈ F. Consequently t = x − y ∈ F − F. This shows
that F − F contains the interval

(
− 1

2 |I|, 1
2 |I|

)
. Since F ⊆ E, it follows

that E − E must also contain this interval.

Theorem 2.4.4. State and prove.

2.4.3 Further Results

Theorem 2.4.5. Since this is the result that opened the chapter, I state it.
The proof is interesting, but I assign it as reading.

Note: Here are the details of the claim made in the proof of Theorem 2.4.5
that

[0, 1) ⊆
∞⋃
k=1

(M + rk) ⊆ [−1, 2].
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The second inclusion is easy because M ⊆ [0, 1) and each scalar rk belongs
to [−1, 1]. To prove the first inclusion, choose any point x ∈ [0, 1). Then x
belongs to some equivalence class of the relation ∼, so there exists some point
y ∈M such that x ∼ y. Hence x = y+ r where r is rational, and since both x
and y belong to [0, 1), we must have r ∈ [−1, 1]. Hence r = rk for some k,
and therefore x ∈M + rk for that k.

Corollary 2.4.6. Omit. Note, however, that there is a very surprising
consequence—we state this below after a remark and the boxed proof of
that remark.

Note: Here are the details of the claim made in the proof of Corollary 2.4.6
that the set M is nonmeasurable.

Let M be the set constructed in the proof of Theorem 2.4.5, and let
{rk}k∈N be an enumeration of Q ∩ [−1, 1]. Then, just as in the proof of
Theorem 2.4.5, we have that the sets Mk = M + rk are disjoint and
satisfy

[0, 1) ⊆
∞⋃
k=1

Mk ⊆ [−1, 2). (A)

That is, we have infinitely many disjoint sets Mk that all have the
same exterior Lebesgue measure (because exterior Lebesgue measure is
translation-invariant), and these sets are contained in [−1, 2), which is a
set that has finite measure. If M was measurable, then each Mk would
be measurable, and therefore we could apply countable additivity and
translation-invariance and conclude that

∣∣∣∣
∞⋃
k=1

Mk

∣∣∣∣ =

∞∑

k=1

|Mk|e =

∞∑

k=1

|M |e =

{
0, if |M |e = 0,

∞, if |M |e > 0.

But equation (A) implies that

1 ≤
∣∣∣∣
∞⋃
k=1

Mk

∣∣∣∣ ≤ 3,

so this is a contradiction. Therefore M cannot be measurable.

Note that we have shown something very counterintuitive in this argument.
Since M is nonmeasurable, it cannot have measure zero. We don’t know
exactly what |M |e is, but it is some strictly positive, finite real number. Since
exterior Lebesgue measure is translation-invariant, we have |Mk|e = |M |e for
every k. Therefore:

the finite interval [−1, 2) contains infinitely many disjoint sets Mk

that each have exactly the same strictly positive exterior measure!

Example 2.4.7. Discuss (if it has not been done already).
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Extra Problems for Section 2.4

1. Suppose that E ⊆ A ⊆ F ⊆ Rd, where E and F are measurable and
|E| = |F | < ∞. Prove that A is measurable. Show by example that this can
fail if |E| = |F | = ∞.

2. Let L be the set of all Lebesgue measurable subsets of Rd, and let N =
P(Rd)\L be the set of all nonmeasurable subsets of Rd. For each of the
following statements, either prove that the statement is true or exhibit a
counterexample.

(a) If N ∈ N , then NC ∈ N .

(b) If M, N ∈ N , then M ∩N ∈ N .

(c) If M, N ∈ N , then M ∪N ∈ N .

(d) If E ∈ L and N ∈ N , then E ∩N ∈ N .

(e) If E ∈ L and N ∈ N , then E ∪N ∈ N .

(f) If E ∈ L and N ∈ N are disjoint, then E ∪N ∈ N .

3. Prove the following higher-dimensional version of the Steinhaus Theorem:
If E ⊆ Rd is Lebesgue measurable and |E| > 0, then the set of differences

E − E =
{
x− y : x, y ∈ E

}

contains an open ball Br(0) for some r > 0.

Note: This problem is helpful for solving Problem 2.4.9 in the main text.
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CHAPTER 3: MEASURABLE FUNCTIONS

Section 3.1: Measurable Functions

Notation 3.1.1 (Scalars and the Symbol F). State. The class of extended
real-valued functions is not a subset of the class of complex-valued functions,
nor conversely, so these are two different cases that we encounter frequently.
Using the symbol F to stand for a choice of either [−∞,∞] or C will allow
for some flexibility and conciseness, although there will still be times where
we will want to be specific about the type of functions we are dealing with.
Note that even if we take F = [−∞,∞], the word scalar always refers to an
actual number ; ±∞ are not scalars.

Remark 3.1.2. State.

3.1.1 Extended Real-Valued Functions

Definition 3.1.3 (Extended Real-Valued Measurable Functions).
State.

Note: When writing on the board, a standard abbreviation for “measur-
able” is m©, the letter “m” with a circle around it.

Example 3.1.4. Omit.

Lemma 3.1.5. State, assign proof for reading.

TYPO in the text: We must assume in Lemma 3.1.5 that the domain E
is a measurable set.

Note: A corollary of Lemma 3.1.5 is that if f is a measurable function, then
{f = a} = {f ≥ a} ∩ {f ≤ a} is a measurable set for every a ∈ R. However,
the converse fails. That is, there exists a function f such that {f = a} is
measurable for every a yet f is nonmeasurable (see Problem 3.1.17).

Lemma 3.1.6 and the remarks that precede it. State, prove, and dis-
cuss.

Lemma 3.1.7. State and prove; this is illustrated in Figure 3.A below.

Corollary 3.1.8. State.

Remark 3.1.9. Briefly discuss. One example is f(x) = 1/x on [−1, 1]. If
we don’t care about sets of measure zero, then we can simply leave f(0)
undefined. Regardless of whether we leave f(0) undefined or we assign it a
value, f is measurable.
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Fig. 3.A The Heaviside function H = χ
[0,∞). There is no continuous function that equals

H at almost every point.

Definition 3.1.10 (Positive and Negative Parts). State. We will en-
counter f+ and f− many times in the remainder of the text (see the illus-
tration in Figure 3.B below).

Note: f+(x)−f−(x) can never take an indeterminate form. It can be ∞−0
or 0−∞, but it can never be ∞−∞.

3.1.2 Complex-Valued Functions

Definition 3.1.11 (Complex-Valued Measurable Functions). State.

Note: By Problem 3.1.18, a function f : Rd → C is measurable if and only
if f−1(U) is measurable for every open U ⊆ C. In this sense measurability is
a generalization of continuity.

Lemmas 3.1.12 and 3.1.13. Omit, or a brief remark is enough.

Extra Problems for Section 3.1

1. Let E be a measurable subset of Rd, let f : E → F be given, and let A
be a dense subset of R. Prove that f is measurable if and only if {f > a} is
measurable for every a ∈ A.

2. Show that there exists a nonmeasurable function f : R → R such that |f |
is measurable on R.

3. Given a point x ∈ [0, 1] with decimal expansion x = 0.d1d2d3 . . . , set

f(x) = max
k∈N

dk.

Every point in [0, 1], except for certain rational points, has a unique decimal
expansion, so this uniquely defines f(x) for all but countably many x (specif-
ically, those rational points that have decimal expansions ending in infinitely
many 0’s or infinitely many 9’s). Prove that f is measurable on [0, 1] and f
is constant a.e. (that is, there exists some scalar c ∈ R such that f(x) = c for
a.e. x ∈ [0, 1]).
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Fig. 3.B A function f (top), its positive part f+ (middle), and its negative part f−

(bottom).

4. Prove that every upper semicontinuous (usc) function f : Rd → R is mea-
surable.

5. Assume E ⊆ Rd is measurable, and suppose that {fn}n∈N is a sequence of
measurable functions on E such that
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∞∑

n=1

∣∣{|fn| > 1}
∣∣ < ∞.

Prove that lim sup
n→∞

|fn(x)| ≤ 1 for a.e. x ∈ E.

6. Let E ⊆ Rd be measurable, and assume that {fn}n∈N is a sequence of
measurable functions on E such that

∞∑

n=1

∣∣{|n2fn| > 1
}∣∣ < ∞.

Prove that
∑
fn(x) converges for almost every x ∈ E. Hint: Borel–Cantelli.

7. (From Stein and Shakarchi). Let E be a measurable subset of Rd with
|E| < ∞. Suppose that functions fn are measurable and finite a.e. on E.
Show that there exist positive numbers cn > 0 such that fn/cn → 0 a.e.

Hint: Choose cn such that |En| < 2−n, where En =
{
|f |/cn > 1/n

}
, and

apply Borel–Cantelli.

Section 3.2: Operations on Functions

3.2.1 Sums and Products

Lemma 3.2.1. State and prove.

Lemma 3.2.2. State, leave proof for reading.

Note: Lemma 3.2.2 is what we will use most often when dealing with
the sum of two functions. However, although it is not stated in the text, the
following result is actually needed in small number of places in the text, most
notably in the proof of Egorov’s Theorem (Theorem 3.4.2). A related result
can be found in Problem 3.2.16.

Theorem 3.2.A. Let E ⊆ R be a Lebesgue measurable set and assume

that f, g : E → [−∞,∞] are measurable functions such that at least one

of f or g is finite a.e. Then f + g and f − g are measurable functions.

Proof. Assume that f is measurable, and g is both measurable and fi-
nite a.e. (the case where f is finite a.e. being entirely symmetric). Define

A+ = {f = ∞}, A− = {f = −∞}, Z = {g = ±∞}.

The quantity f(x) + g(x) can only take the form ∞ − ∞ or −∞ + ∞
when x is in Z, which is a set of measure zero. Therefore f(x) + g(x) is
defined almost everywhere.
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Each of A+, A−, and Z are measurable sets. Also, A+ and A− are
disjoint, and Z has measure zero. If we set

B =
(
A+ ∪ A− ∪ Z

)C
,

then B is measurable and f(x) and g(x) are both finite for x ∈ B.
Consequently

f1 = f · χB and g1 = g · χB

are measurable, and they are finite at every point x ∈ E. Lemma 3.2.1
therefore implies that f1 + g1 is measurable. Now define

h(x) =





f1(x) + g1(x), if t ∈ B ∪ Z,
∞, if x ∈ A+\Z,
−∞, if x ∈ A−\Z.

If we fix a ∈ R, then h(x) > a when x ∈ B ∪Z and f1(x) + g1(x) > a, or
when x ∈ A+\Z. Hence

{h > a} =
(
{f1 + g1 > a} ∩ (B ∪ Z)

)
∪ (A+\Z).

Since A+, B, and Z are measurable sets and f1 + g1 is a measurable
function, it follows that {h > a} is a measurable set. Since this is true
for every a ∈ R, we conclude that h is measurable. We will show that
f(x) + g(x) = h(x) for almost every x ∈ E.

Case 1. If x ∈ B then f1(x) = f(x) and g1(x) = g(x), while the
definition of h tells us that h(x) = f1(x) + g1(x). Consequently h(x) =
f(x) + g(x) for x ∈ B.

Case 2. If x ∈ A+\Z then f(x) = ∞ while g(x) is finite and h(x) =
∞. Therefore h(x) = f(x) + g(x) for x ∈ A+\Z.

Case 3. If x ∈ A−\Z then f(x) = −∞ while g(x) is finite and
h(x) = −∞. Therefore h(x) = f(x) + g(x) for x ∈ A−\Z.

The combination of Cases 1, 2, and 3 implies that h(x) = f(x) + g(x)
for all x except possibly those in Z (see the Venn diagram in Figure 3.C).
But Z has measure zero, so have shown that h = f + g a.e. Since h is
measurable, Lemma 3.1.7 therefore implies that f + g is measurable as
well. Finally, by replacing g with −g, wee see that f − g = f + (−g) is
also measurable. ⊓⊔
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Fig. 3.C Venn diagram: The sets A+ (blue) and A− (orange) are disjoint, Z (gray) has
measure zero, and B (green) is the complement of A+ ∪ A− ∪ Z.

Lemma 3.2.3. State and prove.

Lemma 3.2.4. Just remark that measurability is preserved under quotients
if division by zero is avoided, leave the details for reading.

Note: A minor technical point in the proof is that, as long as it does not
take an indeterminate form, f(x)/g(x) is the same as f(x) ·1/g(x). However,
while f(x)/g(x) is undefined at any points where both f(x) and g(x) are
±∞, the quantity f(x) ·1/g(x) is defined, in the extended real sense, at every
point where g(x) 6= 0.

3.2.2 Compositions

Lemma 3.2.5. State and prove.

Lemma 3.2.6. Omit, or state but leave the proof for reading.

3.2.3 Suprema and Limits

Lemma 3.2.7. State. Prove that sup
n∈N

fn is measurable, assign the other parts

for reading.

Note: A MODIFICATION is needed in the statement of this Lemma.
The lemma remains valid if the hypotheses that the functions fn are finite
a.e. is removed. This is needed in a few places in the text, such as to justify
the measurability of functions that appear in Theorems 4.2.1, 4.2.7, 4.3.7,
and 4.3.8.

Notation 3.2.8. State.

Exercise 3.2.9. State. A picture may be helpful.

Exercise 3.2.10. Just say that the results for sums, products, etc., in the
complex case are similar to those for the extended-real case.
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3.2.4 Simple Functions

Definition 3.2.11 (Simple Function). Motivate and state.

Lemma 3.2.12. State, there’s really not much to say about the proof except
“by inspection.”

Definition 3.2.13 (Standard Representation). State.

Theorem 3.2.14. State and discuss. I usually draw the picture and explain
the idea, but do not write down the explicit formula for the functions fn that
is given in equation (3.3).

Here is a more detailed discussion, and Figure 3.D below gives a color
illustration that improves on Figure 3.1 in the text.

Let f : E → [0,∞] be an arbitrary measurable, nonnegative function
on a measurable domain E. The function f could actually take the value
∞ at some points, but even if it is finite at every point it could still be
unbounded (for example, consider f(t) = 1/t on the domain E = (0, 1)).
We want to define φn(t) by taking f(t) and rounding it down to the
nearest integer multiple of 2−n. However, this could end up giving φn
infinitely many different values, in which case φn would not be a simple
function. Therefore we modify this idea by stopping the rounding-down
process at some finite height (though we let that height increase with n).
For example, we could define φn by

φn(t) =





j

2n
, if f(t) ≤ n and

j

2n
≤ f(t) <

j + 1

2n
(where j ≥ 0),

n, if f(t) > n.

Figure 3.1 illustrates φ1 and φ2 for a particular function f.
We consider some possibilities.

• Case 1: f(t) is finite at a point t ∈ E. In this case f(t) is a
nonnegative real number, and for those nonnegative integers n that
satisfy n ≤ f(t) we have φ(t) = n. However, we have n ≤ f(t)
for only finitely many n. For integers n > f(t) we obtain φn(t) by
rounding f(t) down to the nearest integer multiple of 2−n. Hence, if
n > f(t) then the difference between f(t) and φn(t) is no more than
2−n, so φn(t) converges to f(t) as n→ ∞. Further,

φ0(t) ≤ φ1(t) ≤ · · · ,

so φn increases monotonically to f.

• Case 2: f(t) = ∞ at a point t ∈ E. In this case φn(t) = n for every
n, so again φn(t) increases monotonically to f(t) as n increases.
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Fig. 3.D Illustration of a function f (blue) and approximating simple functions φ1 and φ2

(red). The function φ1 rounds f down to the nearest integer multiple of 1/2, but stops
the rounding process at height 1. The function φ2 rounds f down to the nearest integer
multiple of 1/4, but stops the rounding process at height 2. The function f pictured here
is piecewise continuous, but in general it could be any nonnegative measurable function.

• Case 3: f is bounded on a subset A. In general, φn need not
converge uniformly to f on all of E. However, suppose f is bounded
on some subset A ⊆ E; say 0 ≤ f(t) ≤ M for t ∈ A. Then for any
n > M, we have for all t ∈ A that φn(t) differs from f(t) by no more
than 2−n, and therefore

sup
t∈A

|f(t)− φn(t)| ≤ 2−n, for all n > M.
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This implies that φn converges uniformly to f on the subset A.

Note: We could just as well use 2n or any other increasing sequence instead
of n as the cutoff heights for the functions φn.

Note: Explicitly,

φ1(x) =

{
0, if 0 ≤ f(x) < 1,

1, if f(x) ≥ 1.

For φ2 we round down to the nearest integer multiple of 1
2 , except we never

exceed height 2, so

φ2(x) =





0, if 0 ≤ f(x) < 1
2 ,

1
2 , if 1

2 ≤ f(x) < 1,

1, if 1 ≤ f(x) < 3
2 ,

3
2 , if 3

2 ≤ f(x) < 2,

2, if f(x) ≥ 2.

Note that if f(x) ≤ 2, then f(x) and φ2(x) differ by at most 1
2 units.

Corollary 3.2.15. Assign for reading.

Extra Problems for Section 3.2

1. Let E ⊆ R be measurable, and assume that f : E → [−∞,∞] is measur-
able. Prove directly that

α(x) = sign
(
f(x)

)
=





1, if f(x) > 0,

0, if f(x) = 0,

−1, if f(x) < 0,

is measurable on E.

2. Given the same hypotheses as Lemma 3.2.7, prove the following extensions
of parts (b) and (c) of that lemma. Note that converges means that the limit

exists and is a scalar (so it specifically excludes the case of divergence to
±∞).

(b’) If f(x) = lim
n→∞

fn(x) converges for a.e. x ∈ E, then f is measurable.

(c’) If f(x) =
∞∑
n=1

fn(x) converges for a.e. x ∈ E, then f is measurable.

3. Let {fn}n∈N be a sequence of measurable, real-valued or complex-valued
functions whose domain is a measurable set E ⊆ Rd. Show that the set



Guide and Extra Material c©2024 Christopher Heil 47

L =
{
x ∈ E : lim

n→∞
fn(x) converges to a scalar

}

is equal to
∞⋂
k=1

∞⋃
N=1

∞⋂
n=N

∞⋂
m=N

{
|fn − fm| ≤ 1

k

}
,

and hence is a measurable subset of E.

4. Assume that f : R → R is measurable, and prove that

B =
{
(x, y) ∈ R2 : f(x) ≥ f(y)

}

is a measurable subset of R2.

5. (This problem is related to the definition of the convolution of functions,
and it is discussed explicitly in the text in Section 4.6.3. However, all of the
tools needed to solve it are available now.)

Suppose that f, g : Rd → F are measurable functions. Prove that the
functions F, G : R2d → F given by

F (x, y) = f(x) g(y) and G(x, y) = f(y) g(x− y)

are measurable on R2d.

6. (From Benedetto and Czaja. This is a nice application of the Steinhaus
Theorem.) Assume that f : R → R is measurable, g : R2 → R is continuous,
and

∀x, y ∈ R, |f(x+ y)| ≤ g
(
f(x), f(y)

)
.

Prove the following statements.

(a) There exists a measurable set E ⊆ R with positive measure such that

sup
x,y∈E

|f(x− y)| < ∞.

(b) There exists a δ > 0 such that f is bounded on (−δ, δ).
(c) If n is a positive integer, then f is bounded on (−nδ, nδ).
(d) f maps bounded sets to bounded sets, i.e., if A ⊆ R is bounded, then

f(A) is bounded.

7. This problem uses the definition of Borel sets introduced in Problem 2.3.25.

(a) Let f : Rd → R be Lebesgue measurable. Suppose that g : R → R is
Borel measurable, i.e., g−1(U) is a Borel set for every open U ⊆ R. Show
that the composition g ◦ f is Lebesgue measurable. Generalize to the case of
complex-valued f, g.

(b) Define a square root function Sz = z1/2 on C by

S(reiθ)1/2 = r1/2eiθ/2, for r > 0, 0 ≤ θ < 2π.
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Show that S is Borel measurable, and conclude that if f is measurable on Rd

then so is f1/2 = Sf.

8. Assume that f : R2 → R is continuous, and g, h : [a, b] → R are measurable.
Set F (x) = f

(
g(x), h(x)

)
, and prove that F : [a, b] → R is measurable.

Section 3.3 The Lebesgue Space L∞(E)

Depending on your audience, at this point you may wish to review in more
or less detail some of the concepts related to norms, convergence, and com-
pleteness that are covered in Section 1.2. Alternatively, some instructors may
prefer to delay all discussion of the L∞-norm or the L1-norm until Chapter
7, which discusses the Lp-norms for 1 ≤ p ≤ ∞ in detail.

Remark 3.3.1 and comments preceding. Define the L∞-norm and the
uniform norm.

Note: A common mistake is to assume that “finite a.e.” and “essentially
bounded” are synonyms. They are not; for example, f(x) = 1/x is finite at
almost point of R, but it is not essentially bounded.

Lemma 3.3.2. State; this is a nice contrast between the L∞-norm and the
uniform norm (for the uniform norm, |f(x)| ≤ ‖f‖u for every x, while for
‖ · ‖∞ this only holds for almost every x).

Definition 3.3.3 (The Lebesgue Space L∞(E)). State.

Exercise 3.3.4. State. I usually briefly discuss the fact that the “L∞-norm”
is only a seminorm, and briefly mention the fact that we usually just “iden-
tify” functions that are equal a.e., in which case it becomes a norm. (This
identification of functions that are equal a.e. will be discussed in detail when
we present the Lp spaces in Section 7.2.2.)

3.3.1 Convergence and Completeness in L∞(E)

Definition 3.3.5 (Convergence in L∞-Norm). State.

Remark 3.3.6. Omit.

Lemma 3.3.7. State, and perhaps sketch the proof. Use this opportunity to
briefly discuss completeness and why it is important.

Note: I usually do not present this in class, but if time and interest permit,
a discussion of the fact that L∞(R) is nonseparable could fit in here. This is
discussed in detail in the text in Section 7.4, and Problem 3.3.9 presents the
relevant fact that L∞(R) contains an uncountable collection of functions in
which each element is separated by one unit from every other element.

Extra Problems for Section 3.3
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1. Let E be any measurable subset of Rd such that |E| > 0. Exhibit a
measurable function f : E → R that is finite a.e. but does not belong to
L∞(E).

2. Let E ⊆ Rd be measurable with |E| > 0. Exhibit a set {fi}i∈I of un-
countably many functions in L∞(E) such that ‖fi − fj‖∞ = 1 whenever
i 6= j.

Section 3.4: Egorov’s Theorem

Example 3.4.1 (Shrinking Triangles). Discuss. This is an important
“standard counterexample.”

Theorem 3.4.2 (Egorov’s Theorem). State and prove. (This proof is
adapted from Wheeden and Zygmund.)

Note: Technically, there is an omission in the proof of Theorem 3.4.2,
because the measurability of the difference f−fn is not justified. In particular,
although f and fn are both required to be measurable, only f is assumed
to be finite a.e. Consequently Lemma 3.2.2 is not applicable (nor is Problem
3.2.16). However, Theorem 3.2.A (from earlier in this Instructor’s Guide)
shows that f − g is measurable when f and g are measurable and at least
one is finite a.e. Therefore that result justifies why f − fn is measurable in
this proof.

Note: “Egorov” is a transliteration from the Russian. Another common
English spelling is “Egoroff.” Egorov’s Theorem is named for the Russian
mathematician Dmitri Egorov (1869–1931). The theorem was also proved
independently by Carlo Severini (1872–1951).

Note: In the proof, if x ∈ Z then all that we know is that fn(x)→/ f(x).
However, if x ∈ Zk then we have much more quantitative information, because

Zk = lim sup
n→∞

{
|f − fn| ≥ 1

k

}

=
{
x ∈ E : |f(x)− fn(x)| ≥ 1

k for infinitely many n
}
.

Thus, if x ∈ Zk then we have knowledge about the actual distance be-
tween f(x) and fn(x), not for all n but at least for infinitely many n. Since
|f(x)−fn(x)| ≥ 1

k for infinitely many n we certainly have fn(x)→/ f(x), and
therefore Zk ⊆ Z, but knowing that x ∈ Zk gives more precise information
than just knowing that x ∈ Z.

Note: For several years after receiving my Ph.D. I never found much use for
Egorov’s Theorem, then suddenly it seemed that I needed it in one paper after
another. I guess this just goes to show that you never know when knowledge
will be useful.
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Note: We use the uniform norm in the statement of part (b) instead of the
L∞-norm because nothing is gained by using ‖ · ‖∞. In particular, suppose
that A is such that

lim
n→∞

(
esssup
x/∈A

|f(x)− fn(x)|
)

= 0.

Then the sets

Wn =
{
|f − fn| > ‖f − fn‖∞

}
, for n ∈ N,

each have measure zero, the set

B = A ∪
( ∞⋃

n=1
Wn

)

has exactly the same measure as A, and fn → f uniformly on E\B. So
instead of just getting that fn → f in L∞-norm on E\A, we get fn → f
uniformly on E\B, and the two sets A and B only differ by a set of measure
zero.

Note: In the proof of Egorov’s Theorem, we say that
∣∣Ank

(k)
∣∣ < ε/2k, and

therefore A =
⋃∞

k=1Ank
(k) has measure |A| < ε. One way to see why we get

stictly less than here instead of just less than or equal to is by splitting off
the first term in the computation:

|A| =
∣∣∣∣
∞⋃
k=1

Ank
(k)

∣∣∣∣ =

∣∣∣∣An1
(1) ∪

∞⋃
k=2

Ank
(k)

∣∣∣∣

≤ |An1
(1)| +

∣∣∣
∞⋃
k=2

Ank
(k)

∣∣∣

≤ |An1
(1)| +

∞∑

k=2

|Ank
(k)|

<
ε

2
+

∞∑

k=2

|Ank
(k)| ≤ ε

2
+

∞∑

k=2

ε

2k
= ε.

Definition 3.4.3 (Almost Uniform Convergence). State briefly.

Note: Observe that “almost” in this definition does not mean “except for
a set of measure zero,” as in does in the definition of “almost everywhere.”
Instead, here it means “except for a set of measure ε.” I think it would be
advisable to change the name, say to nearly uniform convergence. In fact,
I’ve adopted this terminology in my more recent books.
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Exercise 3.4.4. State briefly.

Note: TYPO in this exercise. Add the hypothesis that f and fn are finite
a.e.

Extra Problems for Section 3.4

1. Suppose that there were a norm ‖ · ‖ on C[0, 1] such that ‖f − fn‖ → 0
if and only if fn → f pointwise. Let {fn}n∈N be the sequence of Shrinking
Triangles from Example 3.4.1.

(a) Explain why ‖fn‖ 6= 0.

(b) Let gn = fn/‖fn‖. Show that there exists a function g such that gn → g
pointwise.

(c) What is ‖gn‖? What is ‖g‖? Why is this a contradiction?

Conclude that no such norm exists. (For this reason, we say that pointwise
convergence of functions on [0, 1] is not a normable convergence criterion.)

2. Prove that the conclusions of Egorov’s Theorem can be improved to say
that there is a closed set F ⊆ E such that:

(a) |E\F | < ε, and

(b) fn converges uniformly to f on F.

Section 3.5: Convergence in Measure

Definition 3.5.1 (Convergence in Measure). State.

Examples 3.5.2–3.5.5 (Shrinking Boxes I, Boxes Marching to In-
finity, and Boxes Marching in Circles). Discuss. These are important
“standard counterexamples.” The Boxes Marching in Circles are illustrated
in Figure 3.E a few pages later in this guide.

Note: The domain for the “Boxes Marching in Circles” is the interval [0, 1],
but this is topologically isomorphic to a circle if we identify the endpoints 0
and 1.

Lemma 3.5.6. State and prove.

Note: Here are the details of how to construct the indices nk at the begin-
ning of the proof of Lemma 3.5.6.

Since fn
m→ f, we know that

lim
n→∞

∣∣{|f − fn| > 1}
∣∣ = 0.
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Therefore there exists some positive integer n1 such that

n ≥ n1 =⇒
∣∣{|f − fn| > 1}

∣∣ ≤ 1

2
.

Likewise, we have
lim
n→∞

∣∣{|f − fn| > 1
2}

∣∣ = 0,

so there exists some positive integer n2 such that

n ≥ n2 =⇒
∣∣{|f − fn| > 1

2}
∣∣ ≤ 1

4
. (3.B)

In fact, this holds for all sufficiently large integers n2. Therefore, by
choosing a larger value for n2 if necessary, we can fix n2 so that equation
(3.B) holds and we have n2 > n1. Continuing in this way, we obtain
strictly increasing indices 0 < n1 < n2 < · · · such that

∣∣{|f − fn| > 1
k}

∣∣ ≤ 2−k, for all n ≥ nk.

Exercise 3.5.7 and Corollary 3.5.8. Mention briefly if time permits.

Definition 3.5.9 (Cauchy in Measure). It may suffice to simply say that
most convergence criteria have an associated Cauchy criterion, and this is
the case for convergence in measure, with details given in the text.

Theorem 3.5.10. Theorem 3.5.10 will be used in Chapter 7 to prove that
Lp(E) is complete (see Exercise 7.3.5).

Note: Here are the details of how to construct the indices nk at the begin-
ning of the proof of Theorem 3.5.10.

Assume that {fk}k∈N is Cauchy in measure. Then there exists an
integer N1 > 0 such that

m, n ≥ N1 =⇒
∣∣{|fm − fn| > 1

2

}∣∣ < 1

2
.

Set n1 = N1. Then there exists an integer N2 > 0 such that

m, n ≥ N2 =⇒
∣∣{|fm − fn| > 1

22

}∣∣ < 1

22
.

Without loss of generality, we may assume that N2 > N1. Let n2 = N2.
Then we have n1, n2 ≥ N1, so
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∣∣{|fn2
− fn1

| > 1
2

}∣∣ < 1

2
.

Continuing in this way, we construct indices n1 < n2 < · · · such that

∣∣{|fnk+1
− fnk

| > 2−k
}∣∣ < 1

2k
, for every k ∈ N.

Note: Convergence in measure is a metrizable criterion. That is, if we let
M(E) be the set of all measurable functions on E and we identify functions
that are equal almost everywhere, then there exists a metric d on M(E) such

that fn
m→ f if and only if d(f, fn) → 0. This is shown in Problems 7.3.26 for

sets E that have finite measure. It is also true that a sequence is Cauchy in
measure if and only if it is Cauchy with respect to this metric. However, in
practice it is usually easier to deal directly with the definition of convergence
in measure than to try to work with the metric that induces that convergence
criterion. On the other hand, the fact that an underlying metric exists is
important, because it means that when dealing with convergence in measure
we can use our intuition and experience from metric spaces (in particular, it
suffices to use ordinary sequences indexed by the natural numbers N rather
than needing to employ the generalizations of sequences known as “nets”).
See Problems 3.5.14 and 3.5.16 for examples of results about convergence in
measure that are analogous to results that hold in arbitrary metric spaces.

Extra Problems for Section 3.5

1. Assume that E ⊆ Rd and fn : E → F are measurable and

∞∑

n=1

∣∣{|fn| > ε}
∣∣ < ∞

for each ε > 0. Prove that fn → 0 pointwise a.e.

2. Let E be a measurable subset of Rd, and suppose that {fn}n∈N is a se-
quence of measurable functions on E. Suppose that fn → f pointwise a.e.
and fn

m→ g. Prove that f = g a.e.

Section 3.6: Luzin’s Theorem

Luzin’s Theorem is a very interesting result, and the proof of the general-
ization given in Problem 3.6.2 is a nice application of the Tietze Extension
Theorem. However, Luzin’s Theorem plays no further role in this volume. In
my life as a professional mathematician, I have never had occasion to use
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Luzin’s Theorem in any proofs in my research papers (in contrast, Egorov’s
Theorem has surprised me by appearing multiple times). For these reasons,
I usually (albeit with reluctance) only mention Luzin’s Theorem in class,
and assign this section as reading for the students. Naturally you may feel
differently about whether to explicitly discuss Luzin’s Theorem in class.

Luzin’s Theorem is certainly an illuminating result. In fact, it is one of
Littlewood’s widely quoted Three Principles, originally stated in his 1944
text “Lectures on the Theory of Functions” (Oxford University Press, 1944).

The extent of knowledge required is nothing like so great as is sometime supposed.
There are three principles, roughly expressible in the following terms: Every [mea-
surable] set is nearly a finite union of intervals; Every [measurable] function is nearly
continuous; Every convergent sequence of [measurable] functions is nearly uniformly
convergent. Most of the results of [the theory] are fairly intuitive applications of
these ideas, and the student armed with them should be equal to most occasions
when real variable theory is called for. If one of the principles would be the obvious
means to settle the problem if it were ‘quite’ true, it is natural to ask if the ‘nearly’
is near enough, and for a problem that is actually solvable it generally is.

The first of Littlewood’s principles has no name, but corresponds to Prob-
lem 2.2.38 in our text (and is ‘nearly’ our definition of the Lebesgue measure
of a subset of the real line). The second of Littlewood’s principles is Luzin’s
Theorem (Theorem 3.6.1), and the third principle is Egorov’s Theorem (The-
orem 3.4.2).

Note: “Luzin” is a transliteration from the Russian, the other common
spelling in English is “Lusin.”

Extra Problems for Section 3.6

1. Let E be a measurable subset of Rd, and assume that f : E → C is
measurable. Show that there exist continuous functions gn : E → C such
that gn → f pointwise a.e.
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Fig. 3.E The Boxes Marching in Circles from Example 3.5.5. The value of fn(7/8), shown
as a red dot, is 0 for infinitely many n, and 1 for infinitely many other n.
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CHAPTER 4: THE LEBESGUE INTEGRAL

Section 4.1: The Lebesgue Integral of
Nonnegative Functions

4.1.1 Integration of Nonnegative Simple Functions

Definition 4.1.1 (Integral of a Nonnegative Simple Function). State.

Note: Even though 0 ≤ ck < ∞ for every k, if |Ek| = ∞ for some k then

we will have
∫
E
φ = ∞.

Lemma 4.1.2. State and prove. As mentioned in the text, the point of

statement (b) is that whenever we write a simple function as φ =
N∑

k=1

ckχEk
,

whether this is the standard representation or not, then the integral of φ
equals ∫

E

φ =

N∑

k=1

ck |Ek|.

Exercise 4.1.3. State. Sometimes I write out the proof of part (d) in class.

Remark 4.1.4. Indeed, Problem 4.5.33 shows that µ(A) =
∫
A
f(x) dx (for

measurable A ⊆ E) defines a signed or complex measure on E, and therefore
this measure satisfies countable additivity and continuity from below.

4.1.2 Integration of Nonnegative Functions

Definition 4.1.5 (Lebesgue Integral of a Nonnegative Function). Mo-
tivate and state.

Notation 4.1.6. Omit.

Lemma 4.1.7. State but assign proof for reading.

Note: TYPO in the statement of the Lemma. Change “If φ is a simple
function” to “If φ is a nonnegative simple function”.

Lemma 4.1.8. State but assign proof for reading (some parts of the proof
are exercises for the reader).

Theorem 4.1.9 (Tchebyshev’s Inequality). State and prove.

Exercise 4.1.10. State. The proof is a fun (albeit simple) application of
Tchebyshev’s Inequality.
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Note: “Tchebyshev” is a transliteration from the Russian, and there are
number of different English spellings, including Chebyshev, Tchebysheff, and
Chebysheff (with Chebyshev seeming to currently be the preferred spelling).

Extra Problems for Section 4.1

1. Add the following “continuity from above” part to Exercise 4.1.3.

(f) If A1 ⊇ A2 ⊇ · · · are nested measurable subsets of E, A =
⋂
An and∫

A1

φ <∞, then

∫

A

φ = lim
n→∞

∫

An

φ.

Section 4.2: The Monotone Convergence
Theorem and Fatou’s Lemma

4.2.1 The Monotone Convergence Theorem

Theorem 4.2.1 (Monotone Convergence Theorem). State and prove.
An almost everywhere version of the MCT is given later, in Theorem 4.3.7.

The Monotone Convergence Theorem, Fatou’s Lemma, and the Dominated
Convergence Theorem are the three main theorems that deal with the con-
vergence of integrals when the integrands converge pointwise a.e. Not only
are these three theorems extremely important and useful, but they are also
elegant and their proofs are short, attractive, and enlightening.

Note: The Monotone Convergence Theorem is also known as the “Beppo
Levi Theorem,” or (more rarely as far as I can tell) just “Levi’s Theorem.”
When I first learned this, I thought it was the Beppo–Levi Theorem, proved
by two mathematicians whose last names were Beppo and Levi. Only later did
I learn that “Beppo Levi” is the full name of an Italian mathematician (1875–
1961). I’ve always wondered why Levi’s result is usually referred to by his
full name, whereas most theorems or definitions named after mathematicians
use only their surnames, e.g., Hilbert space, Young’s Inequality, or the Hahn–
Banach Theorem (named after Hahn and Banach, not someone whose first
name was Hahn and last name Banach).

Remark 4.2.2. Briefly discuss if it seems interesting.

Note: If fn is Riemann integrable, 0 ≤ fn ր f, and f is Riemann in-

tegrable, then fn and f are Lebesgue integrable, their Lebesgue integrals
coincide with their Riemann integrals, and therefore the MCT implies that∫
fn ր

∫
f. However, this can fail if f is not Riemann integrable.

Theorem 4.2.3. State and prove.

Corollary 4.2.4. State but assign proof for reading.
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Exercise 4.2.5. It may be enough to just say that the integral of nonnegative
functions satisfies countable additivity and continuity from below, and “see
the text for an exercise that gives the precise formulation of these results.”

4.2.2 Fatou’s Lemma

Example 4.2.6 (Shrinking Boxes II). State. This is an important “stan-
dard counterexample.”

Theorem 4.2.7 (Fatou’s Lemma). State and prove. An almost everywhere
version of Fatou’s Lemma appears in in Theorem 4.3.8.

Fatou’s Lemma is surprisingly useful. If you have nonnegative functions
but they are not monotone increasing, then Fatou’s Lemma at least gives
you an inequality. I like to joke that, on average, about half the time that
inequality will be going in the direction that you want, and then you’re done.
The other half of the time you’re out of luck, but if you work hard you might
be able to get it by some other means (probably the Dominated Convergence
Theorem, which comes up soon).

Note: I’ve always wondered why Fatou’s Lemma is a lemma but the Mono-
tone Convergence Theorem is a theorem (especially since the two results are
equivalent, see Problem 4.2.8).

Problems. TYPO in Problem 4.2.9 in the text: We should assume in this
problem that the functions fn are finite a.e.

Note on Problem 4.2.17 in the text: Wheeden and Zygmund [WZ77] take the
measure of the region under the graph of a nonnegative measurable function
f to be their definition of the Lebesgue integral of f. There are several advan-
tages to this, e.g., the Monotone Convergence Theorem then follows easily
from the continuity from below property of Lebesgue measure. One property
that becomes considerably more difficult to prove with this approach is lin-
earity of the integral, as it is not obvious how to relate the measures of the
regions under the graphs of f and g to the measure of the region under the

graph of f + g, in order to prove that
∫
f +

∫
g =

∫
(f + g).

Extra Problems for Section 4.2

1. Let g(x) =
1√

| sin 2πx|
, and consider the function G(x) =

∞∑

k=1

g(kx)

k2
.

(a) Prove that G(x) = ∞ on a dense subset of R.

(b) Prove that the series defining G(x) converges to a finite number at
almost every point x ∈ R.

2. Use Problem 4.2.16 to give another proof that
∫
E
(f + g) =

∫
E
f +

∫
E
g

for all nonnegative measurable functions f and g on a measurable set E.
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Section 4.3: The Lebesgue Integral of
Measurable Functions

4.3.1 Extended Real-Valued Functions

Definition 4.3.1 (Lebesgue Integral of an Extended Real-Valued
Function). State.

Note: f−(x) is zero whenever f+(x) is nonzero, and conversely. In partic-
ular, f+(x)− f−(x) is never an indeterminate form.

Example 4.3.2. Discuss briefly.

Lemma 4.3.3. State and prove.

4.3.2 Complex-Valued Functions

Definition 4.3.4 (Lebesgue Integral of a Complex-Valued Function).
State.

Lemma 4.3.5. State and prove.
There are certain proof strategies that are “stupidly simple but extremely

useful.” One of those, used in this proof, is helpful when you run into a
situation where you have a complex number z but wish that you had its
absolute value |z| instead. If z 6= 0 and you write z in polar form as z = reiθ ,
then by taking α = e−iθ we have

|α| = 1 and αz = e−iθz = r = |z|.

So, at the cost of multiplying by a scalar with unit modulus, you can turn
z into |z|. You can do this for z = 0 too—in this case you can take α = eiθ

with any value of θ that you like.

In this proof the complex number in question is z =
∫
E
f. We do have the

inequality

|z| =
∣∣∣
∫

E

f
∣∣∣ ≤

∫

E

|f |,

but what we really need in this proof is an equality, not an inequality. So we

choose α with unit modulus so that αz =
∣∣∫

E
f
∣∣, and work with this instead.

Simple, but useful.

Note: The statement of this lemma is slightly different than that of
Lemma 4.3.3, which is the analgous result for extended real-valued func-
tions. Also, while the proof of Lemma 4.3.5 is not as straightforward as that
of Lemma 4.3.3, it is more interesting.

4.3.3 Properties of the Integral

Exercise 4.3.6. This type of exercise has appeared before. So, it may not be
necessary to state the exercise precisely—it may suffice just to say in class
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that the properties like linearity and continuity from below that we proved
in Exercise 4.1.3 for simple functions and in Exercise 4.1.8 for nonnegative
functions have analogues for extended real-valued functions and complex-
valued functions; see this exercise in the text for the precise statements.

ERRATA: However, the careful reader may observe that there is an
embarassing order-of-logic issue with the proof of part (e), which is sup-

posed to establish that
∫
cf = c

∫
f. There is no problem with the proof for

the case of extended real-valued functions. But there is an issue with the
complex case. We would like to argue as follows (but there is an issue with
the line in red!): If the integral of f : E → C exists and c = a + ib where a
and b are real, then

∫

E

(cf)

=

∫

E

(a+ ib) (fr + ifi) (substitute)

=

∫

E

(
(afr − bfi) + i (bfr + afi)

)
(complex number arithmetic)

=

∫

E

(afr − bfi) + i

∫

E

(bfr + afi) (def. of complex integrals)

= a

∫

E

fr − b

∫

E

fi + ib

∫

E

fr + ia

∫

E

fi (linearity of real integrals??)

= (a+ ib)

(∫

E

fr + i

∫

E

fi

)
(complex number arithmetic)

= c

∫

E

f (def. of complex integrals).

Unfortunately, we only know at this point that part of “linearity of real

integrals” holds. While we do know that
∫
cf = c

∫
f for extended real-valued

functions and real scalars, we have not yet shown that
∫
(f+g) =

∫
f+

∫
g for

integrable extended real-valued functions—that is not proved until Theorem
4.4.10. Therefore the conclusion stated in the red line in the calculations
above is not yet justified based on what we have done to this point. Observe
that this is only an issue for complex-valued functions.

One way to view this may be that I tried to be too clever in attempting to
develop the theory of the integral simultaneously for extended real-valued and
complex-valued functions. One solution to this issue would be to pause the
development of the complex case at this point and proceed with the extended
real-valued case alone until Theorem 4.4.10 is reached. At that point, one
could return and extend all of the results from Exercise 4.3.6 onwards to the
complex-case, until the two cases rejoin at Theorem 4.4.10.
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In summary, this is not an unsolvable problem, but rather more of a tech-
nical annoyance. I suggest pointing out the error in logic to the class, and
perhaps asking them if there is a more elegant solution than what I proposed
above, which requires us to split the development into two cases (real and
complex) from here until Theorem 4.4.10. Aside from making a new edition
of the text, please let me know if you have a suggestion for a better solution!

Theorem 4.3.7 (Monotone Convergence Theorem) and Theorem
4.3.8 (Fatou’s Lemma). These are the almost everywhere versions of these
two theorems. In class, I usually just say that these are applications of Exer-
cise 4.3.6, and assign them for reading.

Extra Problems for Section 4.3

1. Let f be a complex-valued measurable function defined on a measurable set

E ⊆ Rd. Show that if
∫
E
f exists, then the integral of the complex conjugate

of f is the complex conjugate of the integral of f :
∫
E
f(x) dx =

∫
E
f(x) dx.

2. Let φ(x) = e−πx2

be the Gaussian function, and for each λ > 0 define
φλ(x) = λφ(λx). Set

f(x) = lim
λ→0+

φλ(x) and g(x) = lim
λ→∞

φλ(x).

Use the fact that
∫
φ(x) dx = 1 to determine whether

∫
φλ →

∫
f as

λ→ 0+, or
∫
φλ →

∫
g as λ→ ∞, where the integrals are taken over R.

3. Let E ⊆ Rd be measurable and assume functions fn : E → F are measur-

able and nonnegative a.e. Show that if fn
m→ f, then

∫
E
f ≤ lim inf

n→∞

∫
E
fn.

4. (a) Let E ⊆ Rd and f : E → [∞,∞] be measurable. Suppose that fn is

integrable for every n ∈ N and I = lim
n→∞

∫
E
f(x)n dx exists and is finite.

Prove that |f | ≤ 1 a.e.

(b) Does part (a) hold if we only assume that I exists in the extended real
sense (that is, if I is ±∞)?

(c) Does part (a) hold if we assume that f is complex-valued? Either prove
that it does or exhibit a counterexample.

5. (a) Let E ⊆ Rd and f : E → [−∞,∞] be measurable. Suppose that fn is

integrable for every n ∈ N and there is a scalar c such that
∫
E
f(x)n dx = c

for every n. Prove that there is a measurable set A ⊆ E such that f = χA a.e.

(b) Does part (a) hold if we assume that f is complex-valued? Either prove
that it does or exhibit a counterexample.
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Section 4.4: Integrable Functions and L1(E)

Definition 4.4.1 (L1-Norm and Integrable Functions). State.

Note: When writing on the board, a standard abbreviation for “integrable”
is i©, i.e., the letter “i” with a circle around it.

Example 4.4.2. Discuss briefly.

0 1 2 3 4 5 6 7

Fig. 4.A A continuous, unbounded function f.

Note: The idea of a continuous and unbounded yet integrable function is
illustrated in Figure 4.A. By letting the heights of the triangles grow while

their bases shrink quickly, we can make f unbounded yet still have
∫
|f | <∞.

4.4.1 The Lebesgue Space L1(E)

Definition 4.4.3 (The Lebesgue Space L1(E)). State, and mention that
L1(E) is closed under both addition and scalar multiplication.

Remark 4.4.4. As a harmonic analyst, convolution is very important to me
so I usually make a brief remark about it here. But we will discuss convolution
in detail in Section 4.6.3 (where it is presented as a nice application of Fubini’s
and Tonelli’s theorems), so there is no reason that it has to be mentioned
now.

Exercise 4.4.5. State. This is an easy exercise, but it is quite important,
since it shows that ‖ · ‖1 is “almost” a norm on L1(E). However, it is not a
norm, because instead of precisely satisfying the uniqueness requirement we
only have that ‖f‖1 = 0 when f = 0 almost everywhere. Still, this makes
L1(E) into a very nice space.

Note: If we “identify” functions that are equal almost everywhere then ‖·‖1
becomes a true norm on L1(E). We will discuss this idea of identification of
functions that are equal a.e. in detail when we present the Lp spaces in Section
7.2.2.
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4.4.2 Convergence in L1-Norm

Definition 4.4.6 (Convergence in L1-Norm). State.

Example 4.4.7. Discuss briefly.

Lemma 4.4.8. State and prove.

Figure 4.3. This diagram shows what I think are the most useful implications
among the major forms of convergence criteria that we have encountered to
this point.

Lemma 4.4.9. Omit.

4.4.3 Linearity of the Integral for Integrable Functions

Theorem 4.4.10. State and prove.

Lemma 4.4.11. Simple but useful; state and prove.

4.4.4 Inclusions between L1(E) and L∞(E)

Figure 4.4. Remark: The two functions that appear in this figure are

f(x) = 3e−2000(x−1)2 + 0.05 cos(65x) + 0.07 sin(50x),

g(x) = f(x) + 0.5 sin(2x) + 0.7 cos(3x),

on the domain [0, 4].

Lemma 4.4.12. If time is pressing (which it usually seems to be), then I
just mention the lemma but assign it and the proof for reading.

Lemma 4.4.13. Also simple but useful; state and prove.

Corollary 4.4.14 (Uniform Convergence Theorem). State.

Extra Problems for Section 4.4

1. Prove that if f ∈ L1(E) where E ⊆ Rd is measurable, then the following
statements hold.

(a) If A, B ⊆ E are measurable with |A ∩B| = 0, then

∫

A∪B

f =

∫

A

f +

∫

B

f.

(b) If A is a measurable subset of E, then

∫

E \A
f =

∫

E

f −
∫

A

f.

(c) If A1 ⊇ A2 ⊇ · · · are measurable subsets of E and A =
⋂
An, then

∫

A

f = lim
n→∞

∫

An

f.
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2. Prove that if f ∈ L1(R), then lim
n→∞

1

2n

∫ n

−n

f(x) dx = 0. Show by example

that this can fail if f is not integrable.

3. Either prove or exhibit a counterexample: If fn ∈ L1[0, 1] and ‖fn‖1 ≤ 1
for every n, then fn/n→ 0 pointwise a.e. as n→ ∞.

4. Prove that if f ∈ L1(R), then
∞∑

n=1

∣∣{|f | ≥ n}
∣∣ < ∞.

5. Given f ∈ L1(R) and α > 0, show that lim
n→∞

n−αf(nx) = 0 for a.e. x ∈ R.

6. Let E ⊆ Rd be measurable, and suppose that functions fn, f ∈ L1(E)
satisfy ‖f − fn‖1 ≤ 1/n2 for n ∈ N. Prove that fn → f pointwise a.e.

7. Prove that f(x) = x−1/2 χ(0,1](x) is integrable on R. Then let {rn}n∈N

be an enumeration of the rational numbers Q, and prove that the function

g(x) =
∞∑

n=1
2−n f(x − rn) is integrable on R even though g is unbounded on

every interval.

8. Let E ⊆ Rd be measurable, and let f : E → [−∞,∞] be a fixed function
on E (note that we are not assuming that f is measurable!). Suppose that for
each ε > 0 there exist functions g, h ∈ L1(E) such that g(x) ≤ f(x) ≤ h(x)
for a.e. x ∈ E and ‖h− g‖1 < ε. Prove that f is measurable and f ∈ L1(E).

9. Suppose that g ∈ L1[0, 1] satisfies ‖g‖1 > 0 and f ∈ L∞[0, 1] is such that{
|f | = ‖f‖∞

}
has measure zero. Prove that

∣∣∣∣
∫ 1

0

f(x) g(x) dx

∣∣∣∣ < ‖g‖1 ‖f‖∞.

10. Let E ⊆ Rd be measurable. Prove that if f ∈ L1(E) satisfies
∫
E∩U

f ≥ 0

for every open set U ⊆ Rd, then f ≥ 0 a.e.

11. Suppose that f ∈ L1(Rd) and there are real numbers a < b such that

a |U | ≤
∫

U

f ≤ b |U |, for every open set U.

Prove that a ≤ f ≤ b a.e.

12. (a) Prove Barbălat’s Lemma: If f ∈ C1(a,∞), if lim
t→∞

f(t) exists and is a

scalar, and if f ′ is uniformly continuous, then lim
t→∞

f ′(t) = 0.

(b) How does this relate to Problem 4.4.16(c)?

13. Let E ⊆ Rd be measurable, and fix f ∈ L1(E). Prove that if
∫
E
fg exists

and is a scalar for every g ∈ L1(E), then f ∈ L∞(E).

14. Show that if f ∈ L1(R), then the series
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∞∑

k=1

1√
k
f(x+

√
k)

converges absolutely for almost every x ∈ R.

Section 4.5: The Dominated Convergence
Theorem

4.5.1 The Dominated Convergence Theorem

Theorem 4.5.1 (Dominated Convergence Theorem). State and prove.
This is an extremely important theorem. It’s not that hard to prove, but in

practice it’s the first theorem that you turn to whenever you have a pointwise
convergent sequence of functions and you want to prove that the integrals of
those functions converge. Maybe you’re lucky and your functions are mono-
tone increasing, so you use the MCT, or they’re nonnegative and you can get
by with Fatou’s Lemma, but aside from that your only recourse is likely to
be the DCT.

Note: Theorem 4.5.1 is also known as the Lebesgue Dominated Convergence

Theorem. with corresponding acronym LDCT.

Corollary 4.5.2 (Bounded Convergence Theorem). A simple but useful
corollary. State; the proof is immediate from the DCT (because a constant
function on a domain with finite measure is integrable).

Exercise 4.5.3. This proof of the DCT is much shorter than the one given in
the text and may strike the expert as being more elegant, but I find that the
longer version is more “enlightening” for the reader encountering the proof
for the first time. In any case, this is a very nice exercise for the student to
work out—a fun application of Fatou’s Lemma.

4.5.2 First Applications of the DCT

Lemma 4.5.4. Even though the proof is very easy, I usually do present it in
class as a quick and clear application of the DCT. Then the students can try
their hand at applying the DCT in Exercise 4.5.5.

Exercise 4.5.5. State. Part (a) is an application of the DCT, and part (b)
can be solved by applying part (a).

4.5.3 Approximation by Continuous Functions

Exercise 4.5.6 State the conclusion that f(x) = dist(x,A) is uniformly
continuous.

Note: Here is a short direct proof of the fact that f is uniformly continuous.
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Lemma. Let X be a metric space. If A is a nonempty subset of X, then
the function f : X → R defined by

f(x) = dist(x,A) = inf
{
d(x, z) : z ∈ A

}
, x ∈ X,

is uniformly continuous on X.

Proof. Fix ε > 0, and set δ = ε/2. Choose any two points x, y ∈ X such
that d(x, y) < δ. By definition of the distance function, there exist points
a, b ∈ A such that

d(x, a) < dist(x,A) + δ and d(y, b) < dist(y,A) + δ.

Consequently,

f(y) = dist(y,A) ≤ d(y, a)

≤ d(y, x) + d(x, a)

< δ +
(
dist(x,A) + δ

)
= f(x) + ε.

Interchanging the roles of x and y, we similarly obtain f(x) < f(y) + ε.
Therefore |f(x) − f(y)| < ε whenever d(x, y) < δ, so f is uniformly
continuous on X. ⊓⊔

Theorem 4.5.7 (Urysohn’s Lemma) State and prove.

Note: The proof for metric spaces based on Exercise 4.5.6 is very short.
This theorem can be generalized to normal topological spaces, although the
proof in that setting is more difficult.

Theorem 4.5.8. State and prove. The remarks after the proof talk about
why this theorem implies that Cc(R

d) is a dense subset of L1(Rd). This ter-
minology will be used throughout the rest of the text, especially in Chapter 7,
so it might be appropriate to recall the definition of a dense set and to briefly
discuss Theorem 4.5.8 in that context. Dense sets are briefly introduced in
Definition 1.1.5, but there is also a more detailed discussion of them in Section
1′.10 of Alternative Chapter 1.

Note: I find the fact that infinite-dimensional spaces can contain proper
dense subspaces to be quite counterintuitive based on our experience with
finite-dimensional spaces such as Rd.

For example, the set of rationals Q is a dense subset of the real line, but
it is not a subspace because it is not closed under multiplication by arbitrary
scalars. Recall that in this text we have specified that the scalar field can
only be R or C, and Q is not closed under multiplication by scalars in these
fields (e.g., 2 is rational and π is a scalar, but 2π is not rational).
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Exercise 4.5.9 (Strong Continuity of Translation). This is an important
exercise. We will see one application in Theorem 5.5.3, and more in Chapter 9
when we study convolution and the Fourier transform. It is not difficult to
solve this exercise, but the solution is nice and is a typical example of how to
take advantage of the fact that some “nice” subspace is dense in the space you
are working in (in this case, Cc is dense in L

1). Therefore I state the exercise
in class (and almost always assign it as a formal homework assignment to be
turned in).

The fact that Taf → f in L1-norm almost seems “obvious,” so I use the
example of the box function χ[0,1] to show that the analogous result fails when
we use the L∞-norm instead of the L1-norm. This is a good illustration of
how the meaning of “close” changes depending on what norm you use.

Note: Although Taf → f in L1-norm, it is not true in general that Taf → f
pointwise or pointwise almost everywhere (this is Extra Problem 1 below).

Remark 4.5.10. Omit.

4.5.4 Approximation by Really Simple Functions

Definition 4.5.11 (Really Simple Function). State.

Note: Leib and Loss’ text [LL01] is the only one that I’m aware of that
uses the terminology “really simple function.” When I first encountered this
name I thought it was too glib, but it didn’t take very long for me to change
my mind. After all, these are simple functions (in the usual mathematical
sense) that are “extra simple,” being finite linear combinations of character-
istic functions of intervals (instead of characteristic functions of measurable

sets). The traditional name of “step function” is also quite descriptive, so I
often use the two names interchangeably—although, a really simple function
as defined in the text is slightly more restrictive because a really simple func-
tion is a linear combination of characteristic functions of half-open intervals
[a, b), while a “step function” is usually taken to be a linear combination of
characteristic functions of any type of interval.

Theorem 4.5.12. State and prove.

4.5.5 Relation to the Riemann Integral

Theorem 4.5.13. State. I usually prove part (a) in full, and then make some
remarks about the proof of part (b) but assign the details for reading. The
proof of part (b) is more or less similar to that of part (a), but in part (b) we
must deal with all possible partitions Γk such that |Γk| → 0, and consequently
we cannot assume that the corresponding functions φk and ψk are monotone
increasing or decreasing.

It is observed after the proof that an improper Riemann integral need not
equal a Lebesgue integral over the same interval. This is not so surprising,
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since an improper Riemann integral is a limit of Riemann integrals, so it is
not itself a Riemann integral.

Note: One way to see the difference between the Riemann and the Lebesgue
integral is to look at which axis is subdivided in the definition. In the Riemann
integral, we partition the x-axis. We let a = x0 < x1 < · · · < xn = b be a
partition of the interval [a, b] in the x-axis, and form a corresponding Riemann
sum

RΓ =

n∑

j=1

f(ξj) (xj − xj−1),

where ξj ∈ [xj−1, xj ]. We then consider appropriate limits of these Riemann
sums to form the Riemann integral.

In contrast, one way to view the Lebesgue integral is to consider the ap-
proximation by simple functions that we first described in Theorem 3.2.14.
There, instead of partitioning the x-axis, we partition the y-axis into subin-
tervals of length 2−n, and consider the corresponding simple functions φn
defined in the proof of that theorem. The reader should draw a picture that
compares the two approaches (but beware, because for a continuous function

f whose domain is an interval [a, b] the pictures look somewhat similar—
remember that Lebesgue integral applies to a much broader class of functions
than does the Riemann integral).

Note: Here is a detailed proof of the somewhat simpler special case of the
Riemann integral of a nonnegative continuous function on a closed bounded
interval.

Theorem. If f is a nonnegative continuous function on the interval [a, b],
then its Riemann integral equals its Lebesgue integral.

Proof. Let f be a nonnegative continuous function f on a finite closed
interval, which we take to be [0, 1] for convenience. Such a function is

measurable and bounded, so its Lebesgue integral
∫ 1

0
f(t) dt exists and

is finite. Additionally, f is Riemann integrable, and we can write its
Riemann integral as the limit of Riemann sums using regular partitions,
rather than needing to deal with arbitrary partitions.

To set the notation, fix an integer n > 0, and let ∆n = 1
n . Define

points

tk =
k

n
, for k = 0, 1, . . . , n,

and note that we are implicitly letting tk depend on the value of n. Since
f is continuous, for each k = 1, . . . , n there is a point t∗k ∈ [tk−1, tk]
where f achieves its minimum on that interval (again, t∗k implicitly de-

pends on n). Then Ln =
n∑

k=1

f(t∗k)∆n is a lower Riemann sum for f.
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Since f is Riemann integrable, these lower Riemann sums converge to
the Riemann integral, which we will call I:

I = lim
n→∞

Ln = lim
n→∞

n∑

k=1

f(t∗k)∆n. (4.A)

Define

φn =

n∑

k=1

f(t∗k)χ[tk−1,tk).

This is a simple function, and its Lebesgue integral
∫ 1

0
φn equals the

lower Riemann sum Ln. Since f is continuous, the functions φn converge
pointwise to f on the interval [0, 1). We declare that φn(1) = f(1), so
φn(t) converges pointwise to f(t) for every t ∈ [0, 1]. Since φn ≤ f,

Ln =

∫ 1

0

φn ≤
∫ 1

0

f. (4.B)

Therefore,

I = lim
n→∞

Ln ≤
∫ 1

0

f (by equations (4.A) and (4.B))

=

∫ 1

0

(
lim
n→∞

φn

)
(since φn → f pointwise)

≤ lim inf
n→∞

∫ 1

0

φn (Fatou’s Lemma)

= lim inf
n→∞

Ln = I. (by equation (4.A))

Hence the Lebesgue integral of f equals the Riemann integral of f. ⊓⊔

Note: Here are the details of why a claim made in the proof of part (b) of
Theorem 4.5.13 is true.

Assume that f is discontinuous at a point x /∈ Z ∪ S. In this case
x ∈ (a, b), since a and b are both in S. There must exist some ε > 0 such
that for every δ > 0 there is a point t ∈ (x − δ, x+ δ) ∩ (a, b) such that
|f(x)− f(t)| ≥ ε. CLAIM: It follows from this that

ψk(x) − φk(x) ≥ ε for every k ∈ N.
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To see why this claim is true, fix any particular k ∈ N. Write the
partition Γk as

Γk =
{
a = x0 < x1 < · · ·xn = b

}
.

Since x /∈ S, we know that x is not equal to any xj . Hence x ∈ (xj−1, xj)
for some j, and since this interval is open there is some δ > 0 such that
(x − δ, x+ δ) ⊆ (xj−1, xj). Let t be the point specified above.

Now, either f(x) ≥ f(t) or f(t) ≤ f(x). If we have f(t) ≥ f(x), then
f(t)− f(x) ≥ ε, so

ψk(x) = Mj = sup
u∈[tj−1,tj]

f(u) (definition of Mj)

≥ f(t)
(

since t ∈ (x− δ, x+ δ) ⊆ (tj−1, tj)
)

≥ f(x) + ε

≥
(

inf
u∈[tj−1,tj ]

f(u)

)
+ ε

(

since x ∈ (tj−1, tj)
)

= mj + ε = φk(x) + ε.

Hence ψk(x)−φk(x) ≥ ε in this case. A symmetric argument shows that
this inequality also holds if f(x) ≥ f(t).

An Extra Theorem .

The proof of Theorem 4.5.8 given in the text employs Urysohn’s Lemma.
Below is another theorem whose proof is a nice application of Urysohn’s
Lemma. I like this proof, but I didn’t include it in the text and usually don’t
present it in class (although it would be a good reading assignment). The
proof is a little long, and shorter proofs can be given using techniques that
we will develop in Section 6.4. In fact, this result is Theorem 6.4.7 in the
main text, and it is proved there by applying the Weierstrass Approximation
Theorem and integration by parts. Additionally, Problem 9.1.32 uses the
technique of convolution to give a variation on and improvement to this
theorem.

Theorem. If f ∈ L1[a, b] satisfies

∫ b

a

f(x) g(x) dx = 0, for all g ∈ C[a, b], (A)

then f = 0 a.e.
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Proof. Before beginning the proof, we observe that if we were allowed
to take g ∈ L∞[a, b] in equation (A) instead of g ∈ C[a, b], then the
proof would be easy, because we could choose g so that |g(x)| = 1 and
f(x) g(x) = |f(x)| for every x. Unfortunately, such a function g need not
be continuous, so we must be more careful.

Case 1: F = [−∞,∞]. Suppose that f : [a, b] → [−∞,∞] is integrable
and equation (A) holds for all continuous real-valued functions g.

If {f > 0} has positive measure, then there must exist some δ > 0
such that

m =
∣∣{f > δ}

∣∣ > 0.

By Exercise 4.5.5(b), there exists an ε > 0 such that for each measurable
set A ⊆ [a, b] we have

|A| < ε =⇒
∫

A

|f | < δm

2
. (B)

By Lemma 2.2.15, there exists a closed set K ⊆ {f > δ} such that

|K| > m

2
and

∣∣{f > δ}\K
∣∣ < ε

2
.

Likewise, there exists an open set U ⊇ {f > δ} such that

∣∣U \{f > δ}
∣∣ < ε

2
.

Since K and UC are disjoint closed sets, Urysohn’s Lemma implies
that there exists a continuous function θ : R → R such that 0 ≤ θ ≤ 1
everywhere on R, θ = 1 on K, and θ = 0 on R\U.

Let V = U ∩ [a, b]. Then |V \K| < ε, so by equation (B) we have

∣∣∣∣
∫

V \K
f θ

∣∣∣∣ ≤
∫

V \K
|f θ| ≤

∫

V \K
|f | < δm

2
.

On the other hand, f > δ and θ = 1 on K, so

∫

K

f θ ≥
∫

K

δ = δ |K| > δm

2
.

Within the interval [a, b], the product f θ is zero everywhere outside of
the set V. Hence

0 =

∫ b

a

f θ =

∫

V

f θ =

∫

K

f θ +

∫

V \K
f θ >

δm

2
− δm

2
= 0.
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This is a contradiction, so {f > 0} must have measure zero. A symmetric
argument shows that |{f < 0}| = 0, and therefore f = 0 a.e.

Case 2: F = C. Suppose that f is a complex-valued integrable function
such that equation (A) holds for all continuous complex-valued functions
g on [a, b]. Write f = fr + ifi where fr and fi are real-valued. Then

equation (A) implies that
∫ b

a
fr g = 0 for every continuous real-valued g,

so fr = 0 a.e. by Case 1. Similarly, fi = 0 a.e., so it follows that f = 0
a.e. ⊓⊔

Extra Discussion: A Side Journey into Abstract Mea-
sure Theory

I do not always present this in class, but here is some extra discussion that
gives some context to part (b) of Exercise 4.5.5. The way I teach the course,
the first semester (corresponding to the material in this textbook) is focused
on Lebesgue measure, and abstract measure theory is not covered until the
second semester. Sometimes I present this material in class as a small preview
of something that is coming in the second semester, However, abstract mea-
sures are not needed in the remainder of this volume. A very short version of
this material is incorporated into the text in Problem 4.5.33. An extra Chap-
ter 10 on abstract measure theory is available online at the text’s website,
see http://people.math.gatech.edu/∼heil/real/

A Side Journey into Abstract Measure Theory

To elaborate on the significance of Exercise 4.5.5(b), consider the fol-
lowing definition from abstract measure theory (for motivation, recall
from Section 2.2.2 that the set L of all Lebesgue measurable subsets of
Rd is a σ-algebra of subsets of Rd).

Definition. (Signed and Complex Measures) Let X be a set, and
let Σ be a σ-algebra of subsets of X (see Definition 2.2.14). A function
ν : Σ → [−∞,∞] is a signed measure on (X,Σ) if:

(a) ν(∅) = 0,

(b) ν(A) takes at most one of the values ∞ and −∞, and

(c) ν is countably additive. That is, if A1, A2, . . . are countably many
disjoint sets in Σ, then

ν

(⋃
k

Ak

)
=

∑

k

ν(Ak).
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A complex measure on (X,Σ) is a function ν : X → C that satisfies
the same three properties (although property (b) is superfluous in this
case, since ν(A) must always be a complex number and therefore can
never be ±∞).

We say that a signed or complex measure ν is a positive measure on
(X,Σ) if ν(A) ≥ 0 for every A ∈ Σ. ♦

For example, the results of Chapter 2 show that Lebesgue measure is
a positive measure on (Rd,L). The following lemma shows how to use
integrable functions to construct other examples of signed and complex
measures on (Rd,L).

Lemma. Fix f ∈ L1(Rd) and set

νf (A) =

∫

A

f(t) dt, for all measurable A ⊆ Rd.

Then ν is a signed measure on (Rd,L) if f is extended real-valued, and
it is a complex measure on (Rd,L) if f is complex-valued.

Proof. We trivially have νf (∅) = 0, and if A is a measurable set then

|νf (A)| =
∣∣∣∣
∫

A

f(t) dt

∣∣∣∣ ≤
∫

A

|f(t)| dt ≤
∫

E

|f(t)| dt = ‖f‖1 < ∞.

Hence νf (A) can never be ±∞. Finally, if A1, A2, . . . are disjoint mea-
surable sets, then Exercise 4.3.6(f) implies that

ν

(⋃
k

Ak

)
=

∫

∪Ak

f =
∑

k

∫

Ak

f =
∑

k

ν(Ak).

Therefore properties (a)–(c) in the Definition are all satisfied. ⊓⊔
Essentially, the measure νf uses the function f to place a “weighting”

on Rd. Instead of taking the measure of a set A to be its Lebesgue

measure, νf assigns it the value
∫
A
f. We think of νf (A) =

∫
A
f as being

the measure of the set A under the measure νf . For example, if f is
identically 1, then νf (A) is simply the Lebesgue measure of A. However,
in contrast to Lebesgue measure, since f need not be nonnegative, the
measure νf (A) of a set A might be negative or complex. Still, νf has
the countable additivity property that is given in statement (c) of the
Definition above.

The Lemma above is not the only way to create signed or complex
measures. For example, Problem 4.5.33 constructs two interesting mea-
sures known as counting measure and the δ measure. However, there is
an important difference between those two measures and the measures νf
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constructed in the Lemma above. Rewording Exercise 4.5.5(b) in terms
of νf , we have that if f is an integrable function, then given any ε > 0
there is a δ > 0 such that

|A| < δ =⇒ |νf (A)| < ε.

In particular, it follows (why?) that

|A| = 0 =⇒ νf (A) = 0.

Thus, if the Lebesgue measure of a set is zero, then the νf -measure of
that set is also zero. Using the language of abstract measure theory, we
say that the measure νf is absolutely continuous with respect to Lebesgue
measure. In contrast, Problem 4.5.33 shows that counting measure and
the δ measure are not absolutely continuous with respect to Lebesgue
measure.

Although we will not delve further into the meaning of this type of
absolute continuity, we mention that there is a relationship to the abso-

lutely continuous functions that we will study in Chapter 6. In particular
if f is an integrable function on E = [a, b], then its antiderivative

F (x) =

∫ x

a

f(t) dt = νf ([a, x]), x ∈ [a, b],

is an absolutely continuous function in the sense of Chapter 6. For more
details on abstract measure theory, we refer to texts such as [Rud87],
[Fol99], or [BC09].

Extra Problems for Section 4.5

1. Prove that if

f(t) =

{
e−|t|, if t is irrational,

0, if t is rational,

then the following statements hold.

(a) f is integrable on R, and hence Exercise 4.5.9 implies that Taf → f in
L1-norm as a→ 0.

(b) There is no point t ∈ R where Taf(t) → f(t) as a→ 0.

2. Evaluate the following limits.

(a) lim
n→∞

∫ 1

0

nex

1 + n2x1/2
dx.

(b) lim
n→∞

∫ 1

0

2x2 + 1 + x5/n

x1/2 + sin(x/n)
dx.
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(c)
∞∑

n=0

1

n!

∫ 2

1

lnnx dx.

3. Let f be an integrable function defined on a measurable set E ⊆ Rd. Show
that if {An}n∈N is a sequence of measurable subsets of E such that |An| → 0,

then
∫
An
f → 0.

4. Prove that if f is monotone increasing on [a, b], then f is Riemann inte-
grable.

5. (a) Prove that if f is continuous and nonnegative on [a,∞), then its
Lebesgue integral and improper Riemann integral on [a,∞) both exist and
are equal: ∫ ∞

a

f = lim
b→∞

∫ b

a

f.

Remark: Since f is nonnegative and measurable, both the improper Rie-
mann integral and the Lebesgue integral exist in the extended real sense, so
the issue is to show that they are equal (note that they could be infinite).

(b) Prove that if f is continuous and nonnegative on (a, b] then its Lebesgue
integral and improper Riemann integral on [a, b] both exist and are equal:

∫ b

a

f = lim
c→a+

∫ b

c

f.

6. (a) Assume that f is continuous a.e. on (a, b], and is bounded on [c, b] for
every a < c < b. Prove that if f is Lebesgue integrable on [a, b], then its
improper Riemann integral on that interval exists and equals its Lebesgue
integral: ∫ b

a

f = lim
c→a+

∫ b

c

f.

(b) Assume that f is continuous a.e. on [a,∞), and is bounded on [a, b]
for every b > a. Prove that if f is Lebesgue integrable on [a,∞), then its
improper Riemann integral on that interval exists and equals its Lebesgue
integral: ∫ ∞

a

f = lim
b→∞

∫ b

a

f.

7. Prove that if f ∈ L1[0, 1], then lim
n→∞

∫ 1

0
xn f(x) dx = 0. Also show that if

α = lim
x→1−

f(x) exists, then lim
n→∞

n
∫ 1

0
xn f(x) dx = α.

8. (From Folland.) Compute the following limit for each of the cases a > 0,
a = 0, and a < 0:

lim
n→∞

∫ ∞

a

n

1 + n2x2
dx.
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9. Suppose that g ∈ L1(R), and let f be a continuous function on R that has
compact support. Evaluate the following limits.

(a) lim
t→∞

∫ ∞

−∞
f(tx) g(x) dx.

(b) lim
t→0

∫ ∞

−∞
f(tx) g(x) dx.

10. Choose f ∈ L1(R), and for each λ > 0 define fλ(x) = λf(λx). Prove the
following statements.

(a) ‖fλ‖1 = ‖f‖1 for each λ > 0 (for this reason, we refer to fλ as an
L1-normalized dilation of f).

(b) The L1-normalized dilation is strongly continuous on L1(R). That is,

lim
λ→1

‖f − fλ‖1 = 0.

11. Let E be a measurable subset of Rd. A (possibly uncountable) collection
of integrable functions {fj}j∈J is said to be uniformly integrable on E if for
every ε > 0 there exists a δ > 0 such that for every measurable set A ⊆ E
we have

|A| < δ =⇒
∫

A

|fj | < ε for all j ∈ J.

Prove the following statements.

(a) Any set of finitely many integrable functions is uniformly integrable.

(b) If a sequence {fn}n∈N of integrable functions is Cauchy in L1-norm,
then {fn}n∈N is uniformly integrable.

(c) If a sequence {fn}n∈N of integrable functions converges in L1-norm,
then {fn}n∈N is uniformly integrable.

(d) If |E| < ∞, {fn}n∈N is uniformly integrable, and fn → f a.e., then
fn → f in L1-norm.

(e) The assumption in part (d) that E has finite measure is necessary.

12. Given a bounded measurable function α : [a, b] → C, prove that there
exist simple functions φn such that:

(a) φn =

Mn∑

j=1

cnj χ[an
j−1

,an
j
) where a = an0 < an1 < · · · < anMn

= b,

(b) |cjn| ≤ ‖α‖∞ for every n and j, and

(c) φn → α pointwise a.e.

13. Fix f ∈ L1(R), and for each n ∈ N let gn(x) =

∫ x+n

x−n

f(t) dt.

(a) Prove that gn is continuous.
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(b) Given x ∈ R, determine whether lim
n→∞

gn(x) exists, and if so find it.

(c) Given n ∈ N, determine whether lim
x→∞

gn(x) exists, and if so find it.

14. Let [a, b] be a finite interval.

(a) Prove that lim
n→∞

∫ b

a

cos2 nxdx =
b− a

2
.

(b) Suppose that an cosnx→ 0 pointwise a.e. on [a, b]. Prove that an → 0
as n→ ∞.

15. Evaluate lim
n→∞

∫ ∞

0

xn−2

1 + xn
sin(πx/n) dx.

16. Evaluate lim
N→∞

N

∫ N

0

1

t
ln
(
1 + t

N

) dt

1 + t2
dt.

17. Assume that functions fn : [0, 1] → [0,∞] are measurable and fn → f
a.e. for some f ∈ L1[0, 1].

(a) Prove that the integrals
∫ 1

0
min

{
fn(x), f(x)

}
dx exist for each n, and

lim
n→∞

∫ 1

0

min
{
fn(x), f(x)

}
dx =

∫ 1

0

f(x) dx.

(b) Prove that if lim
n→∞

∫ 1

0

fn =

∫ 1

0

f, then fn → f in L1-norm.

18. Let Pe be the set of all even polynomials. Taking our domain to be the
interval [−1, 1], what is the closure of Pe in L1[−1, 1]?

19. Let E ⊆ Rd be measurable. Assume that functions fn ∈ L1(E) satisfy
‖fn‖1 → 0, and there is some function g ∈ L1(E) such that |fn|2 ≤ g a.e. for
every n. Prove that

∫
E |fn|2 → 0 as n→ ∞.

20. Assume that f is continuous on [0, 1], g is measurable on [0, 1], and

0 ≤ g(x) ≤ 1 a.e. Evaluate lim
n→∞

∫ 1

0

f
(
g(x)n

)
dx.

21. Add this question to Problem 4.5.25: What is the limit if we only assume
that K is bounded, instead of assuming that K is compact?

22. Prove that if f ∈ L1(R), then lim
n→∞

∫ ∞

−∞
f(x) sinnxdx = 0.

Hint: First prove the result for really simple functions.

23. Prove that if f ∈ L1[0, 1], then

lim
n→∞

∫ 1

0

f(x) | sin 2πnx| dx =
2

π

∫ 1

0

f(x) dx.

Hint: First prove the result for really simple functions.
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24. Use Problem 4.5.27 to give another solution to Problem 4.4.24.

25. Let X be a set, and let Σ be a σ-algebra of subsets of X. A function
ν : Σ → C is a complex measure on (X,Σ) if: ν(∅) = 0 and ν is countably
additive, i.e., if E1, E2, . . . are countably many disjoint sets that belong to
Σ, then

ν

(⋃
k

Ek

)
=

∑

k

ν(Ek).

Extend the results of Problem 4.5.33 to complex measures.

26. Let f(x) = sinx2. Prove the following statements.

(a) The Lebesgue integral of f on the interval [0,∞) does not exist.

(b) The improper Riemann integral lim
b→∞

∫ b

0

sinx2 dx does exist.

Remark: The Riemann integrals
∫ b

0
sinx2 dx and

∫ b

0
cosx2 dx are known

as Fresnel integrals. It can be shown that they converge to
√
π/8 as b→ ∞.

27. Given f ∈ L1(R), compute (with proof): lim
t→∞

∫ ∞

−∞
|f(x− t)− f(x)| dx.

Remark: The limit here is as t→ ∞, not t→ 0.

Section 4.6: Repeated Integration

The point of this section is that we cannot always interchange the order of
repeated integrals. Essentially, there can be difficulties if indeterminate forms
arise in the wrong place. The theorems of Fubini and Tonelli give hypotheses
which allow us to avoid this situation. Fubini’s Theorem avoids indeterminate
forms by imposing an integrability hypothesis, so certain integrals are all
finite. Tonelli’s Theorem allows infinite integrals but requires the integrand
to be nonnegative, thereby again avoiding indeterminate forms.

Remark: The proofs in Section 4.6 are directly inspired by the presentation
in [WZ77].

4.6.1 Fubini’s Theorem

The general form of the proof of Fubini’s Theorem follows a path that we
have seen many times: Establish the result first for characteristic functions of
boxes, then open sets, then sets of measure zero, then Gδ-sets, then arbitrary
measurable sets. After that, extend to simple functions and finally to arbi-
trary integrable functions. However, the details are somewhat technical. I like
to present the proof of Lemma 4.6.4 in full because it is a nice application of
the Monotone Convergence Theorem. However, because of time constraints
I often end up only sketching the proofs of some of the remaining lemmas,
such as Lemma 4.6.5.
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Theorem 4.6.1 (Fubini’s Theorem). Motivate and state. I often use Prob-
lem 4.6.12 as motivation, because it’s easy to see that the two iterated in-

tegrals in that problem are zero, yet
∫∫

|f | = ∞. Another nice example is

given in Extra Problem 1 below, because in that problem the three possible
integrals are all different.

Note: My instructor for graduate real analysis at the University of Mary-
land was Prof. Umberto Neri, who was a Ph.D. student of Alberto Calderón
(1920–1998), who was a Ph.D. student of Antoni Zygmund (1900–1992) (so
it is not surprising that our text was the book by Wheeden and Zygmund).
Neri referred to Problem 4.6.12 as “Zygmund’s example.”

Note: “Fubini” has entered the mathematical lexicon as a verb, e.g., we say
that “now we Fubini the integrals” to mean that we apply Fubini’s Theorem
to interchange the order of an iterated integral.

Lemma 4.6.2 and Lemma 4.6.3. These are easy and “obvious,” so I state
them but assign the proof as reading.

Lemma 4.6.4. State, prove part (a) and assign the proof of part (b) as
reading.

Note: We cannot replace the hypothesis that fk ր f (monotone increasing
at every point) with fk ր f a.e. We assume that fk ր f at every point
because this implies that for every y we have fy

k (x) ր fy(x) for every x. If
we only assume that fk ր f almost everywhere, then it is not easy to show
(without using Tonelli’s Theorem) that for a.e. y we have fy

k (x) ր fy(x) for
a.e. x. If there was an easy way to do this then we could simplify the whole
proof of Fubini’s Theorem, but I don’t see any easy way to do this.

Lemma 4.6.5. State. Usually I sketch the idea of the proof but do not give
all of the details.

In the proof of this lemma, it may be more enlightening to discuss Step 2
first, as this gives some motivation for why the technical Step 1 is needed.

Note: I refer to the iteration

A1 = Q1, Ak+1 = Qk+1 \ (Q1 ∪ · · · ∪Qk)

as the “Disjointization Trick.” It’s yet another one of those simple but ex-
tremely useful techniques that keep popping up.

Lemma 4.6.6. State and prove (or sketch).

Theorem 4.6.7. State and prove (or sketch).

4.6.2 Tonelli’s Theorem

Theorem 4.6.8 (Tonelli’s Theorem). State and prove.
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Corollary 4.6.9. State and prove. In practice, when we want to use Fubini’s
Theorem we usually have to employ this corollary first in order to establish
that the hypotheses of Fubini’s Theorem are satisfied.

Lemma 4.6.10. I usually state and discuss this lemma, simply because vari-
ations on this result seem to arise with great regularity in daily mathematical
life.

4.6.3 Convolution

Theorem 4.6.11. I like to present convolution in some detail. First, it is a
beautiful application of Tonelli and Fubini and second, as a harmonic analyst
convolution plays an extremely important role in the mathematics that I do
every day.

Problems. Note on Problem 4.6.18 in the text: There are several other ways
to evaluate this particular integral, such as contour integration.

Note on Problem 4.6.19 in the text: The improper integral can also be eval-
uated by other methods, such as contour integration.

Extra Problems for Section 4.6

1. As illustrated in Figure 4.B, for x, y ≥ 0, define

f(x) =





1, if x ≤ y < x+ 1,

−1, if x+ 1 ≤ y < x+ 2,

0, otherwise.

Prove that
∫ ∞

0

∫ ∞

0

f(x, y) dy dx = 0,

∫ ∞

0

∫ ∞

0

f(x, y) dx dy = 1,

∫∫

[0,∞)2
|f(x, y)| (dx dy) = ∞.

2 Let E be a measurable subset of R such that 0 < |E| < ∞. Prove that
E + E = {x+ y : x, y ∈ E} contains an open interval centered at the origin.

3. (a) Define f on R2 by

f(x, y) =





1/x2, if 0 < y < x < 1,

−1/y2, if 0 < x < y < 1,

0, otherwise.
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0 1 2 3
0

1

2

3

Fig. 4.B The function f from Extra Problem 1.

Compute
∫∫

|f | and the two iterated integrals of f. Do they exist? Are they
equal? Are these results consistent with Fubini’s Theorem?

(b) Similar to part (a), but on the domain [−1, 1]2 consider

∫ 1

−1

∫ 1

−1

xy

(x2 + y2)2
dx dy.

(c) Similar to part (a), but on the domain [−1, 1]2 consider

∫ 1

−1

∫ 1

−1

x2 − y2

(x2 + y2)2
dx dy.

4. Let g : R → R be a nonmeasurable function, and define f : R2 → R by

f(x, y) =

{
g(x), y ∈ Q,

e−|x|−|y|, y /∈ Q.

Is f measurable? Is f integrable?

5. Let f ∈ L1(R) be given, and define g(x) =

∫ x

x−1

f(y)√
x− y

dy for x ∈ R.

Prove directly (that is, from Fubini/Tonelli, rather than by appealing to
Theorem 4.6.11) that g is defined for a.e. x, and g is measurable and integrable
on R.

6. Exhibit real scalars amn such that the following two series exist but satisfy
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∞∑

m=1

∞∑

n=1

amn 6=
∞∑

n=1

∞∑

m=1

amn.

7. (a) Prove that f(x) =

∫ ∞

−∞

1

1 + t2
sin(x − t)

1 + (x − t)2
dt is continuous on R.

(b) Is F (x, t) =
1

1 + t2
sin(x− t)

1 + (x− t)2
integrable on R2?

8. Assume that f ∈ L1(R) satisfies ‖f‖1 ≤ 1. Define

g(x) =

∫ ∞

−∞

f(y)

1 + |x− y|2 dy.

Prove the following statements.

(a) g is continuous.

(b) g(x) → 0 as |x| → ∞.

(c) There exists a point x with |x| < 100 such that |g(x)| < 1.

9. Let W (x) = max
{
1 − |x|, 0

}
be the “hat function” on [−1, 1]. Given f in

L1(R), let

g(y) =

∫ ∞

−∞
f(t) e−2πiyt dt, y ∈ R.

Prove that g is bounded on R, and for a.e. x we have

∫ ∞

−∞
f(y)

(
sinπ(x − y)

π(x − y)

)2

dy =

∫ 1

−1

g(t) (1− |t|) e2πitx dt.

Hint:

∫ ∞

−∞
W (t) e2πiyt dt =

(sinπy
πy

)2
.

10. Show that if f is measurable on [0, 1] and f(x) − f(y) is integrable on
[0, 1]2, then f ∈ L1[0, 1].

11. Compute

∫ 1

0

∫ 1

y

x−3/2 cos

(
xy

2x

)
dx dy.

12. Let F be a closed subset of (0, 1), and set

M(x) =

∫ 1

0

dist(y, F )

|x− y|2 dy, for x ∈ R.

Prove that M(x) = ∞ for all x ∈ FC, but M(x) <∞ for a.e. x ∈ F.

Hint: Consider
∫
F
M(x) dx.
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13. Assume that E ⊆ Rd is measurable, f ∈ L1(E), and g ∈ L∞(E) is

nonnegative. Prove that

∫

E

f(x) g(x) dx =

∫ ∞

0

∫

{g>t}
f(x) dx dt.

14. Let f be a bounded measurable function on a measurable set E ⊆ Rd,
and suppose that there exist some constants C > 0 and 0 < α < 1 such that∣∣{|f | > t}

∣∣ ≤ Ct−α for all t > 0. Prove that f is integrable.

15. Prove that if f, g ∈ L1(R) are nonnegative a.e., then ‖f∗g‖1 = ‖f‖1 ‖g‖1.

16. Let E and F are measurable subsets of R with finite measure, and let A
be an arbitrary measurable subset of R. Prove the following statements.

(a) |E ∩ (F + x)| = (χE ∗ χ−F )(x).

(b) |E ∩ (F + x)| is a continuous function of x. Hint: Problem 4.6.27.

(c) lim
x→0

|E ∩ (F + x)| = |E ∩ F |.

(d) lim
x→∞

|E ∩ (F + x)| = 0.

(e) If |E ∩ (F + x)| = 0 for almost every x, then either |E| = 0 or |F | = 0.
Hint: Extra Problem 2.

(f) If |A\(A+ x)| = 0 for almost every x, then either |A| = 0 or |AC| = 0.

17. Suppose that A and B are Lebesgue measurable subsets of [0, 1], and
|A| = |B| = 1/2. Prove that there exists at least one point x ∈ [−1, 1] such
that |(A+ x) ∩B| ≥ 1/10.

18. (a) Given measurable sets A, B ⊆ R with finite measure, prove that

lim
t→0

|A△(A + t)| = 0,

where A△B = (A\B) ∪ (B\A) is the symmetric difference of A and B.

(b) Show by example that if E ⊆ R is measurable but has infinite measure,
then we need not have lim

t→0
|E△(E + t)| = 0.

19. (a) Prove that

∫ ∞

0

x2n e−x2

dx =
(2n)!

22nn!

√
π

2
for integer n ≥ 0.

Hint: Induction; the base step is Problem 4.6.18.

(b) Prove that if a > 0 then

∫ ∞

−∞
e−x2

cos ax dx =
√
π e−a2/4.

20. Assume f ∈ L1(0,∞), and define

g(x) =

∫ ∞

0

f(y)

x+ y
dy, x > 0.

Prove that g is differentiable at every point x > 0, and if a > 0 then g′

belongs to L1(a,∞). Must g′ be integrable on (0,∞)?
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CHAPTER 5: DIFFERENTIATION

This chapter contains a higher proportion of highly technical proofs than
in most of the other chapters. In particular, this includes theorems in Sections
5.3, 5.4, and 5.5. This requires the instructor to make some difficult choices.
In my experience, it is better to assign the less-enlightening proofs as reading
than to attempt to present them in detail in class. I indicate my choices in
this regard in the notes below; naturally you may feel differently about what
is most important to discuss in the classroom.

Note: A streamlined presentation of the main material from Chapters 5
and 6 can be found in the article:

C. Heil, Absolute Continuity and the Banach–Zaretsky Theorem, in: “Excur-
sions in Harmonic Analysis,” Volume 6, M. Hirn et al., eds., Birkhäuser, Cham
(2021), pp. 27–51.

A recording of a related video lecture on Absolute Continuity and the

Banach–Zaretsky Theorem can be found at

https://www.youtube.com/watch?v=YSwNcVhV18w (5.A)

Section 5.1: The Cantor–Lebesgue Function

Definition 5.1.1 (Cantor–Lebesgue Function). Present the construction
of the Cantor–Lebesgue function, culminating with this definition.

Theorem 5.1.2. State and prove.

Definition 5.1.3 (Singular Function). State.

Example 5.1.4. Discuss.

Note: The Hungarian composer Grörgy Ligeti (1923–2006) wrote a series
of études for piano. Étude 13 is entitled L’escalier du diable, or The Devil’s

Staircase. You can find a variety of performances on the internet. I do not
know if Ligeti was inspired by the Cantor–Lebesgue function or not, but when
I listen to this piece I am certainly reminded of it!

Note: Here are some interesting facts about the Cantor–Lebesgue function
that I do not usually present in class.
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Just for fun, we mention that the reflected Cantor–Lebesgue func-
tion ϕ pictured in Figure 5.2 satisfies the following refinement equation:

ϕ(x) =
1

2
ϕ(3x) +

1

2
ϕ(3x− 1) + ϕ(3x− 2) +

1

2
ϕ(3x− 3) +

1

2
ϕ(3x− 4).

That is, ϕ equals a finite linear combination of compressed and trans-
lated copies of itself, and so its graph exhibits a type of self-similarity.
Changing the refinement equation slightly gives some related functions.
For example, it can be shown that there exists a continuous, compactly
supported function f that satisfies the refinement equation

f(x) =
2

3
f(3x) +

1

3
f(3x− 1) + f(3x− 2) +

1

3
f(3x− 3) +

2

3
f(3x− 4).

This function f, which is pictured in Figure 5.A, was (so far as I am
aware) first constructed by De Rham (but by a recursive procedure sim-
ilar to the one that constructs the Cantor–Lebesgue function, not via a
refinement equation). It is not differentiable at any point in [0, 2] (see
[DL91], reference given below).

Refinement equations and their solutions (which are called refinable

functions) play important roles in wavelet theory and in subdivision
schemes in computer-aided graphics. For more information on refine-
ment equations, we refer to sources such as [Dau92], [DL91] (reference
below), or [Heil11, Sec. 12.5].

[DL91] I. Daubechies and J. C. Lagarias, Two-scale difference equa-
tions: I. Existence and global regularity of solutions, SIAM J. Math.

Anal., 22 (1991), pp. 1388–1410.

Fig. 5.A De Rham’s nowhere differentiable function.
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Extra Problems for Section 5.1

1. Use the refinement equations given above to plot the Cantor–Lebesgue
function and de Rham’s function. More generally, given α ∈ R investigate
solutions to the refinement equation

f(x) = (12 + α) f(3x) + (12 − α) f(3x− 1) + f(3x− 2)

+ (12 − α) f(3x− 3) + (12 + α) f(3x− 4).

Hint: We know f(k) for k integer.

2. (a) Show that there exists a compactly supported (but discontinuous)
function D2 that satisfies the refinement equation

D2(x) = D2(2x) + D2(2x− 1).

(b) Show that there exists a continuous and compactly supported function
D4 that satisfies the refinement equation

D4(x) =
1+

√
3

4 D4(2x) +
3+

√
3

4 D4(2x−1)+ 3−
√
3

4 D4(2x−2)+ 1−
√
3

4 D4(2x−3).

Note: Part (a) is easy; part (b) is challenging. The functions D2 and D4

are the first in the sequence of Daubechies scaling functions ; see [Dau92] or
[Heil11, Ch. 12].

3. This problem will give an alternative derivation of the Cantor–Lebesgue
function. Let

X =
{
f ∈ C[0, 1] : f(0) = 0 and f(1) = 1

}
.

Although X is not a subspace of C[0, 1], it is a subset, and therefore

du(f, g) = ‖f − g‖u = sup
x∈[0,1]

|f(x)− g(x)|

defines a metric on X. Define an operator T : X → X by

(Tf)(x) =





1
2f(3x), if 0 ≤ x ≤ 1

3 ,

1
2 , if 1

3 ≤ x ≤ 2
3 ,

1
2 + 1

2f(3x− 2), if 2
3 ≤ x ≤ 1.

Prove that T maps X into itself, and it is a contraction in the sense that

‖Tf − Tg‖u ≤ ‖f − g‖u
2

, for all f, g ∈ X.

As a consequence, the Banach Fixed Point Theorem (also known as the Con-
tractive Mapping Theorem, see [Heil18, Prob. 2.9.20]), implies that T has a
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unique fixed point in X. Prove that the Cantor–Lebesgue function is that
fixed point.

4. This problem is about an interesting nonlinear operator.

(a) Let
M =

{
f ∈ C[0, 1] : f(0) = 0 and f(1) = 1

}
.

Prove thatM is a closed subset (but not a subspace) of C[0, 1], and therefore
M is a complete metric space with respect to the uniform metric.

(b) Given f ∈M, define Af by

Af(x) =





1
2f

(
x

1−x

)
, if 0 ≤ x < 1

2 ,

1− 1
2f

(
1−x
x

)
, if 1

2 ≤ x ≤ 1.

Prove that Af ∈M, and therefore A is an operator that maps M into M.

(c) Show that

‖Af −Ag‖u ≤ ‖f − g‖u
2

, for all f, g ∈M.

Consequently A is Lipschitz on M.

(d) Use the Banach Fixed Point Theorem to prove that there exists a
unique function m ∈ M such that Am = m. This function is called the
Minkowski question mark function or the slippery Devil’s staircase.

(e) Set f0(x) = x, and define fn+1 = Afn for n ∈ N. Prove that fn
converges uniformly to m (this fact was used to generate the approximation
to m that appears in Figure 5.B).

Note: For more information on the Minkowski question mark function, see

W. Van Assche, Orthogonal polynomials for Minkowski’s question mark function, J.
Comput. Appl. Math., 284 (2015), pp. 171–183.

Section 5.2: Functions of Bounded Variation

5.2.1 Definition and Examples

Definition 5.2.1 (Bounded Variation). Motivate and state.

Note: The idea of the arc length of a curve is mentioned in the text. This
is distinct from the idea of bounded variation, but it is closely related. For
details on arc length, the reader should look for articles dealing with rectifiable

curves (for example, see [WZ77, Sec. 2.2]).



88 Guide and Extra Material c©2024 Christopher Heil

Fig. 5.B The function f7 from Extra Problem 4, approximating the slippery Devil’s
staircase.

Note: We usually will write V [f ] for the total variation of f over [a, b]
when the interval [a, b] is understood, and V [f ; a, b] when we need to be more
explicit. This notation is inspired by the notation used in [WZ77].

Note: In Definition 5.2.1 we declare BV[a, b] to be the set of all functions
f : [a, b] → C that have bounded variation. This includes the real-valued
functions of bounded variation as a subspace. A function with bounded vari-
ation must be finite at every point (that is, it cannot take the values ±∞),
so there is nothing to be gained by considering functions f : [a, b] → F that
have bounded variation.

Note: For functions whose domain is the entire real line R we usually define
the following two types of bounded variation.

First, we say that f : R → C has bounded variation on R if

V [f ;R] = sup
a<b

V [f ; a, b] < ∞,

and corresponding let

BV(R) =
{
f :R → C : V [f ;R] <∞

}

be the space of functions with bounded variation on R.
Second, we say that f : R → C has locally bounded variation on R if

V [f ; a, b] <∞ for every finite interval [a, b]. The space of functions with
locally bounded variation on R is

BVloc(R) =
{
f :R → C : V [f ; a, b] <∞ for all a < b

}
.
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Clearly BV(R) ⊆ BVloc(R). A function like f(x) = x has locally bounded
variation on R, but does not have bounded variation on R.

Defining bounded variation for functions in higher dimensions is a
considerably more subtle issue; see the following references.

E. Giusti, Minimal Surfaces and Functions of Bounded Variation,
Birkhäuser Verlag, Basel, 1984.

P. Góra and A. Boyarsky, On functions of bounded variation in higher
dimensions, Amer. Math. Monthly, 99 (1992), 159–160.

Remark 5.2.2. Omit.

Example 5.2.3. Mention.

Exercise 5.2.4. Briefly discuss, the important point being that even differ-
entiable functions can have unbounded variation.

5.2.2 Lipschitz and Hölder Continuous Functions

Lemma 5.2.5 and Corollary 5.2.6. State after defining Lipschitz func-
tions. Briefly mention that this lemma and corollary follow from the Mean
Value Theorem (but be careful for complex-valued functions; apply the MVT
to the real and imaginary parts separately).

Note: Sometimes the terms “Lipschitz continuous” and “Hölder continu-
ous” are used interchangeably. That is, for some authors a “Lipschitz contin-
uous function” is what we consider a “Hölder continuous function” and vice
versa.

Lemma 5.2.7. State; the proof is easy.

Note: While every Lipschitz function has bounded variation, if we fix any
0 < α < 1 then we can construct a function that is Hölder continuous with
exponent α yet has unbounded variation (see Problem 5.2.22). On the other
hand, some functions that are Hölder continuous but not Lipschitz do have
bounded variation; for example, consider the Cantor–Lebesgue function or
x1/2 on the interval [0, 1].

5.2.3 Indefinite Integrals and Antiderivatives

Exercise 5.2.8 (Simple Version of the FTC). State, ask the students to
prove it themselves.

Lemma 5.2.9. State and prove. It’s only a lemma because we will later (after
considerable work) be able to greatly strengthen the conclusions.

Remark 5.2.10. I mention this briefly during the proof of Lemma 5.2.9.
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Questions after Remark 5.2.10. Discuss, the point being that there is
still much that we do not know about indefinite integrals, and it will take
more work than might be expected at first glance before we can answer these
questions.

Note: Absolute continuity is mentioned here and at several other points in
this chapter. It is defined precisely in Chapter 6, but it may be appropriate
to state the definition here, and to comment that the definition of absolute
continuity is similar to but “more stringent” than the definition of uniform
continuity.

5.2.4 The Jordan Decomposition

Exercise 5.2.11. State. This exercise, and the next two upcoming lemmas,
will be very useful but the proofs are technical computations that are not
worth spending classtime on.

Lemma 5.2.12. State, but assign the proof for reading.

Definition 5.2.13 (Positive and Negative Variation). State.

Note: For example, if SΓ had the form

SΓ = |5|+ | − 2|+ | − 8|+ |3| = 18,

then we would have

S+
Γ = 5 + 0 + 0 + 3 = 8 and S−

Γ = 0 + 2 + 8 + 0 = 10.

Lemma 5.2.14. By definition, S+
Γ + S−

Γ = SΓ and S+
Γ − S−

Γ = f(b)− f(a).
This lemma shows that the same relationships hold for the positive and neg-
ative variations. This is completely reasonable and the proof is a technical
verification, so I motivate and state the lemma, but assign its proof for read-
ing.

Theorem 5.2.15 (Jordan Decomposition). State and prove.

Corollary 5.2.16. Briefly state.

Extra Problems for Section 5.2

1. Let f(x) = e2πix. Directly compute V [f ; 0, 1] and
∫ 1

0
|f ′|.

Note: Compare your result to Corollaries 5.4.3 and 6.4.5.

2. Suppose that f ∈ BV[a, b] and f ′ ≥ 0 a.e. Must f be monotone increasing?
What if f is differentiable everywhere on [a, b] and f ′(x) ≥ 0 for every x?

3. Suppose that f : [a, b] → R is continuous (but we do not assume that f
has bounded variation). Given 0 < M < V [f ; a, b], show that there exists a
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number δ > 0 such that if Γ is any partition of [a, b] with mesh size |Γ | < δ,
then SΓ ≥M.

4. Prove that if scalars an satisfy
∞∑
n=0

|an| < ∞, then f(x) =
∞∑

n=0
anx

n has

bounded variation on [−1, 1].

5. Suppose that a function f ∈ BV[a, b] is continuous. Prove that f = g − h
where g, h are continuous and monotone increasing.

6. (From Benedetto and Czaja [BC09]). Define f(x) = 0 if x = 0 or x is
irrational. If x = p/q where p and q are relatively prime integers, then set
f(x) = 1/(p2q2). Prove that f ∈ BV[0, 1] and hence f ′ exists a.e., yet f ′ does
not exist on a dense subset of [0, 1].

7. (This is a more detailed version of part (e) of Problem 5.2.19 in the text.)
Prove that if f and g belong to BV[a, b], then fg ∈ BV[a, b], and

V [fg; a, b] ≤ ‖g‖∞ V [f ; a, b] + ‖f‖∞ V [g; a, b].

8. Taking f = g in part (e) of Problem 5.2.19 in the text, or in the preceding
Extra Problem 7, we see that if f ∈ BV[a, b] then f2 ∈ BV[a, b], and

V [f2; a, b] ≤ 2‖f‖∞ V [f ; a, b]2.

Clearly equality holds if f is a constant function, for in this case both sides
are zero. Equality need not hold if f is not constant, but this problem will
show that the constant 2 is the best possible over all nonconstant functions,
even if we require that f(a) = 0. In particular, it is not true that V [f2; a, b]
need be less than or equal to ‖f‖∞ V [f ; a, b]2.

(a) Fix 0 < ε < 2. Exhibit a nonconstant function f ∈ BV[a, b] such that

(2− ε) ‖f‖∞ V [f ; a, b]2 ≤ V [f2; a, b] ≤ 2‖f‖∞ V [f ; a, b]2.

(b) Fix 0 < ε < 2. Exhibit a nonconstant function f ∈ BV[a, b] with
f(a) = 0 such that

(2 − ε)‖f‖∞ V [f ; a, b]2 ≤ V [f2; a, b] ≤ 2‖f‖∞ V [f ; a, b]2.

(c) Is there a nonconstant function f ∈ BV[a, b] for which equality holds?
That is, such that V [f2; a, b] = 2‖f‖∞ V [f ; a, b]2? Remark: I think not, but
I don’t have a proof.

Another remark: Compare the inequality V [f2; a, b] ≤ 2 ‖f‖∞ V [f ; a, b]2

obtained above with the inequality from Problem 6.4.16 in the text. In terms
of variation functions, Problem 6.4.16 states that if f ∈ AC[a, b] and f(a) = 0
then V [f2; a, b] ≤ V [f ; a, b]2.
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9. Give an example that shows that the conclusion of Problem 5.2.27 in
the text can fail if f is not continuous. In fact, it can fail if f has a single
removable discontinuity and is continuous at all other points in [a, b].

Note: Part (c) of Problem 5.2.27 is not that difficult for real-valued func-
tions; the hint is to use the Mean-Value Theorem and the fact that f ′ is
Riemann integrable. However, the Mean-Value Theorem does not hold for
complex-valued functions, so more care is required for that case.

Section 5.3: Covering Lemmas

5.3.1 The Simple Vitali Lemma

Theorem 5.3.1 (Simple Vitali Lemma). This result is surprising at first
glance, and the proof is quite elegant, so I like to state and prove it. The
proof in the text is adapted from Folland’s text [Fol99].

Note: There are variations on Theorem 5.3.1 that use coverings by closed
balls or closed cubes instead of open balls, but the proofs are not as elegant.
For example, Wheeden and Zygmund (see [WZ77, Lemma 7.4]) prove a result
for cubes, but it takes considerably more work (although they do point out
that the easy greedy algorithm proof will work for cubes if we know that the

set E is measurable). It almost seems like you should be able to use the simple
greedy approach when the sets are cubes or closed balls—just fatten them
up a little to get open sets, which you can then reduce to finitely many sets
just as we did in our proof of Theorem 5.3.1. The trouble with this approach
seems to be that there’s no easy way to correctly undo the fattening in the
end.

5.3.2 The Vitali Covering Lemma

If time is short, which is often the case, then I omit discussion of the Vitali
Covering Lemma. The proof is nice, but it is quite long and quite technical,
and in this text this theorem is only needed for the proof that that monotone
increasing functions are differentiable a.e. (which is a proof that I usually do
not have time to cover in class).

Definition 5.3.2 (Vitali Cover). State if time permits.

Theorem 5.3.3 (Vitali Covering Lemma). State if time permits, but
assign the proof for reading.

Note: By replacing sn/2 with αsn where 0 < α < 1, we can replace the
constant 5 in the proof of Theorem 5.3.3 with 3 + ε.

Note: We only proved that the Simple Vitali Lemma (Theorem 5.3.1) holds
for open balls, but if we accept that it also holds for closed balls (which does
require a nontrivial proof), then the following nice argument from Wheeden
and Zygmund [WZ77] shows how to use that fact to give a different proof of
Theorem 5.3.3.
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Assume the following form of the Simple Vitali Lemma: There exists
a constant 0 < β < 1 (depending only on the dimension d) such that if
E ⊆ Rd has finite exterior measure and B is a covering of E by closed
balls, then there exist disjoint balls B1, . . . , BN ∈ B such that

N∑

k=1

|Bk| > β |E|e.

(Unfortunately, as remarked before, the proof of this fact is not as easy

as our proof of Theorem 5.3.1.) Assuming this, we will give a proof of
Theorem 5.3.3.

Proof of Theorem 5.3.3. Assume that 0 < |E|e < ∞ and let B be
a Vitali covering of E. Let β be as given above, and without loss of
generality assume that ε is small enough that ε < β/2. Let C = 1−(β/2),
and note that 0 < C < 1.

Let U ⊇ E be an open set such that |U | < (1 + ε) |E|e. Remove all
balls from B that are not contained in U ; this still leaves us with a Vitali
cover of E. By the Simple Vitali Lemma for closed balls, we can find
disjoint closed balls B1, . . . , BN1

in B such that

N1∑

k=1

|Bk| > β |E|e.

Then

∣∣∣∣E \
N1⋃
k=1

Bk

∣∣∣∣
e

≤
∣∣∣∣U \

N1⋃
k=1

Bk

∣∣∣∣ = |U | −
N1∑

k=1

|Bk|

< (1 + ε) |E|e − β |E|e

= (1 + ε− β) |E|e

<

(
1− β

2

)
|E|e. = C |E|e.

Let E1 = E \
N1⋃
k=1

Bk. Then

{
B ∈ B : B is disjoint from B1, . . . , BN1

}

is a Vitali covering of E1. By the Simple Vitali Lemma, there exist dis-
joint closed balls BN1+1, . . . , BN2

that are disjoint from B1, . . . , BN1
such

that
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N2∑

k=N1+1

|Bk| > β |E1|e.

Arguing similarly as before, we see that

∣∣∣∣E \
N1⋃
k=1

Bk

∣∣∣∣
e

=

∣∣∣∣E1 \
N2⋃

k=N1+1

Bk

∣∣∣∣
e

< C |E1|e < C2 |E|e.

Continuing in this way we obtains disjoint closed balls B1, B2, . . . and
integers N1 < N2 < · · · such that for each m ∈ N we have

∣∣∣∣E \
Nm⋃
k=1

Bk

∣∣∣∣
e

< Cm |E|e. ⊓⊔

Section 5.4: Differentiability of Monotone
Functions

Definition 5.4.1 (Dini Numbers). Assign for reading; this is only relevant
for part (b) of Theorem 5.4.2, which is the only part of that theorem that I
do not present in class.

Theorem 5.4.2 (Differentiability of Monotone Increasing Func-
tions). I state the theorem and prove parts (a), (c), and (d) in class.

This proof of part (b) relies on the Vitali Covering Lemma. It is an inter-
esting proof, but it is technical and long, so in the interest of time and clarity
of understanding I assign the proof of part (b) as reading.

Note: Part (a) of Theorem 5.4.2 is sometimes called the Darboux–Froda

Theorem.

Note: It’s quite fascinating to me that the proof of part (b) is diffi-
cult. Part (a) shows that a monotone function has at most countably many
discontinuities—so just how complicated could a monotone increasing func-
tion be? Shouldn’t it be differentiable at all but those countably many discon-
tinuities? Well, no, it’s more complicated than that. Things would be easier
if the discontinuities were separated, but there’s no reason that they have to
be. For example, Problem 5.4.7 constructs a monotone increasing function
that is discontinuous at every rational point!

Note: I give a streamlined discussion of the material in Chapters 5 and 6,
including a discussion of why Theorem 5.4.2(b) is difficult, in the survey paper
and video lecture listed in the boxed material in (5.A) at the beginning of
the comments for this chapter.
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Note: There are several approaches to the proof that monotone functions
are differentiable a.e., and the reader may find it interesting to to compare the
proofs given in different texts, such as [BBT97, Thm. 7.5], [Fol99, Thm. 3.23],
[SS05, Thm. 3.3.14], or [WZ77, Thm. 7.5] (which is the inspiration for our
proof). None of these proofs are simple or straightforward, in my opinion.

Note: If f is monotone increasing on [a, b] then
∫ b

a
f ′ ≤ f(b) − f(a), but

strict inequality can hold. Problem 6.4.22 will show that if f is monotone
increasing and we let E be the set of points in [a, b] where f is differentiable,

then
∫ b

a
f ′ = |f(E)|e.

Corollary 5.4.3. State and prove.

Lemma 5.4.4. Assign for reading. (This proof is adapted from [WZ77].)

Note: Corollary 5.4.3 shows that if f ∈ BV[a, b], then we have the in-
equality |f ′| ≤ V ′ a.e. Wheeden and Zygmund (see [WZ77, Thm. 7.24]) use
Lemma 5.4.4 to prove that if f ∈ BV[a, b] is real-valued, then |f ′| = V ′ al-
most everywhere. I have not been able to determine whether this fact still
holds for complex-valued functions f ∈ BV[a, b]. It is certainly true if f is
absolutely continuous (we prove this later in Corollary 6.4.5), but what if a
complex-valued f has bounded variation but is not absolutely continuous? I
don’t present this in class, but following is my exposition of the proof that
appears in [WZ77, Thm. 7.24].

Theorem. If f ∈ BV[a, b] is real-valued and we set V (x) = V [f ; a, x] for
x ∈ [a, b], then V is differentiable a.e. and

V ′(x) = |f ′(x)|, for a.e. x ∈ [a, b].

Proof. By definition, V (b) = V [f ; a, b] is the supremum of all sums SΓ

over all finite partitions Γ of [a, b]. Therefore, we can choose a sequence
of partitions

Γk =
{
a = xk0 < xk1 < · · · < xkmk

= b
}

such that
0 ≤ V (b)− SΓk

< 2−k, for k ∈ N,

where

SΓk
=

mk∑

j=1

|f(xkj )− f(xkj−1)|.

Choose scalars ckj in such a way that

fk(x) =




f(x) + ckj , if x ∈ [xkj−1, x

k
j ] and f(x

k
j ) ≥ f(xkj−1),

−f(x) + ckj , if x ∈ [xkj−1, x
k
j ] and f(x

k
j ) < f(xkj−1),
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is well-defined (takes a single value) at each point xkj for j = 1, . . . ,mk,
and satisfies fk(a) = 0. Then we have for each choice of j and k that

fk(x
k
j )− fk(x

k
j−1) = |f(xkj )− f(xkj−1)|.

Consequently,

SΓk
=

mk∑

j=1

(
fk(x

k
j )− fk(x

k
j−1)

)
= fk(b)− fk(a) = fk(b).

In particular, we have for each k ∈ N that

0 ≤ V (b)− fk(b) = V (b)− SΓk
< 2−k.

We claim that for each fixed k, the function V (x) − fk(x) is an in-
creasing function of x. To see this, suppose that a ≤ x < y ≤ b. If there
is a single j such that x, y ∈ [xkj−1, x

k
j ], then

fk(y)− fk(x) = |f(y)− f(x)| ≤ V (y)− V (x).

On the other hand, if x ∈ [xkj−1, x
k
j ] and y ∈ [xkℓ−1, x

k
ℓ ] with j < ℓ, then

fk(y)− fk(x) =
(
fk(y)− fk(x

k
ℓ−1)

)
+

ℓ−1∑

i=j+1

(
fk(x

k
i )− fk(x

k
i−1)

)
+

(
fk(x

k
j )− fk(x)

)

≤
(
V (y)− V (xkℓ−1)

)
+

ℓ−1∑

i=j+1

(
V (xki )− V (xki−1)

)
+

(
V (xkj )− V (x)

)

= V (y)− V (x).

In any case, we obtain fk(y)− fk(x) ≤ V (y)− V (x), and therefore

V (x)− fk(x) ≤ V (y)− fk(y).

Hence V (x)− fk(x) is indeed increasing with x.

Therefore, for x ∈ [a, b] we have that

0 = V (a)− fk(a) ≤ V (x) − fk(x) ≤ V (b)− fk(b) < 2−k.

Consequently,
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0 ≤
∞∑

k=1

(
V (x) − fk(x)

)
≤

∞∑

k=1

2−k < ∞.

Lemma 5.4.4 therefore implies that the series

∞∑

k=1

(
V ′(x)− f ′

k(x)
)

converges for almost every x. Hence V (x) − fk(x) → 0, and therefore
f ′
k(x) → V ′(x), for almost every x. But since V is increasing we have
V ′(x) ≥ 0 a.e., so

|f ′(x)| = |f ′
k(x)| → |V ′(x)| = V ′(x) a.e.

Thus |f ′(x)| = V ′(x) a.e. ⊓⊔

Extra Problems for Section 5.4

1. Let f(x) = x sin(1/x) for x 6= 0, and set f(0) = 0. Compute the Dini
numbers of f at x = 0.

2. Given f : [a, b] → R and a < x < b, prove that if all four Dini numbers of
f are finite at x, then f is continuous at x. Must f be differentiable at x?

3. Assume f : [a, b] → R has bounded variation. Suppose that there exist
numbers α, β > 0 such that

∣∣{D+f > α}
∣∣
e
> β.

Prove that V [f ; a, b] ≥ αβ.

Section 5.5: The Lebesgue Differentiation
Theorem

Some difficult choices may need to be made at this point due to the lack of
time. Although the Maximal Theorem is very important, especially in subse-
quent courses, I feel that it does not have the highest priority for presentation
in this first course on real analysis. Therefore, if time is short (which it usu-
ally is), I significantly compress the remainder of Chapter 5 and cover only
the following:

• State Lemma 5.5.1 as motivation.
• State Theorem 5.5.3, and prove if possible (because it is a nice application

of convolution).
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• State the Lebesgue Differentiation Theorem.

Naturally you may feel differently about priorities for the course. If time
permits (which it actually has for me in some semesters), then I state and
prove the remaining results of this chapter as indicated in the comments
below.

Lemma 5.5.1. Motivate and state, but I usually assign the proof as reading.

Exercise 5.5.2. State.

5.5.1 L1-Convergence of Averages

Theorem 5.5.3. State and prove. This result, which establishes the L1-
norm convergence of the averages f̃h, is motivation for the statement of the
Lebesgue Differentiation Theorem, which concerns pointwise a.e. convergence
of averages.

I usually briefly discuss the connection between averages and convolution,
which is presented in the text after the proof of Theorem 5.5.3.

Note: Since the averages converge in L1-norm, there is at least a sub-
sequence {hn}n∈N such that f̃hn

→ f pointwise a.e. However, it is usually
difficult, if not impossible, to obtain anything stronger than the existence of a
pointwise a.e. convergent subsequence from convergence in L1-norm. This is
one reason why the Lebesgue Differentiation Theorem is so surprising, since
it says that if f is locally integrable then we have pointwise a.e. convergence
of the full sequence of averages.

5.5.2 Locally Integrable Functions

Definition 5.5.4. State.

5.5.3 The Maximal Theorem

Definition 5.5.5 (Hardy–Littlewood Maximal Function). Motivate
and state.

Theorem 5.5.6 (Maximal Theorem). Motivate, state, and prove.

5.5.4 The Lebesgue Differentiation Theorem

Theorem 5.5.7 (Lebesgue Differentiation Theorem). State and prove.
(This proof is adapted from [Fol99].)

5.5.5 Lebesgue Points

Definition 5.5.8 (Lebesgue Points and the Lebesgue Set). State.

Definition 5.5.9 (Regularly Shrinking Family). State.
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Theorem 5.5.10. State and prove.

Corollary 5.5.11. State and prove.

Extra Problems for Section 5.5

1. Add the following to Problem 5.5.20 in the text: How does this problem
relate to Extra Problem 12 in the comments to Section 2.2?

2. Suppose that g is locally integrable on R, and for all r, s ∈ Q with r 6= 0

we have that
∫ 1

0
g(rx+ s) dx = 0. Prove that g = 0 a.e.

3. Suppose that f ∈ L1(R) is such that
∫∞
−∞ fφ = 0 for every integrable

simple function φ that satisfies
∫∞
−∞ φ = 0. Prove that f = 0 a.e.

4. Let A be a measurable subset of [0, 1].

(a) Prove that if |A| > 2/3, then A contains an arithmetic progression of
length 3 (that is, there exist a, d ∈ R such that a, a+ d, a+ 2d ∈ A.

Hint: Consider h(x) = χA(x) + χA(x+ 1
3 ) +

χA(x+ 2
3 ).

(b) Use part (a) to prove that if |A| > 0, then A contains an arithmetic
progression of length 3.

5. (From [SS05].) Given f ∈ L1
loc(R

d), prove that

∣∣{Mf > t}
∣∣ ≤ 2 · 3d

t

∫

{|f |>t/2}
|f |, for all t > 0.

Hint: Apply the Maximal Theorem to the function that is equal to f when
|f | > t/2 and is zero otherwise.

6. Let E ⊆ R be measurable with 0 < |E| < ∞. For each r > 0, define
hr(x) =

∣∣E ∩ [x− r, x+ r]
∣∣ for x ∈ R.

(a) Prove that hr is continuous.

(b) Prove that there exists some radius r0 > 0 such that if 0 < r < r0,
then there exists an x such that hr(x) = r. Hint: Consider lim

r→0
(1/r)hr(x).
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CHAPTER 6: ABSOLUTE CONTINUITY AND THE
FUNDAMENTAL THEOREM OF CALCULUS

Section 6.1: Absolutely Continuous Functions

Definition 6.1.1 (Absolutely Continuous Function). Motivate and
state.

Note: According to this definition, in order for f to be absolutely contin-
uous, no matter how we distribute the subintervals [aj, bj ] in [a, b], as long
as they are nonoverlapping and their total length satisfies

∑
j

(bj − aj) < δ,

then we must have
∑
j

|f(bj)− f(aj)| < ε. This is much more restrictive than

simply requiring that f be continuous on [a, b].

Note: A function f : R → C is locally absolutely continuous on R if it
is absolutely continuous on every finite interval [a, b]. The space of locally
absolutely continuous functions is denoted by ACloc(R).

Example 6.1.2. Discuss. It may suffice to just sketch the idea with a picture.

Lemma 6.1.3. State and prove.

Example 6.1.4. Discuss.

6.1.1 Differentiability of Absolutely Continuous
Functions

Corollary 6.1.5. State.

Lemma 6.1.6. State and prove.

Note: It seems “obvious” that G′ = g, but we cannot prove this yet!

Extra Problems for Section 6.1

1. Given a < b, is the function G constructed in Problem 4.5.31(b) absolutely
continuous on the finite interval [a, b]?

2. Suppose that f : [a, b] → [c, d] is absolutely continuous and ϕ : [c, d] → C

is Lipschitz. Prove that ϕ ◦ f ∈ AC[a, b].

3. (a) Show that if f ∈ AC[a, b] and 1 ≤ p <∞, then |f |p ∈ AC[a, b].

(b) Fix 0 < p < 1 and let f(x) = x sinx−p for x > 0 and f(0) = 0. Prove
that f ∈ AC[0, 1], but |f |p /∈ BV[0, 1].
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Section 6.2: Growth Lemmas

Lemma 6.2.1 (Growth Lemma I). State and prove.

Note: I find the two “Growth Lemmas” proved in this section to be quite
elegant, yet they are not covered in most textbook developments of absolute
continuity that I have seen. This first Growth Lemma relates the amount
that a function f blows up the measure of a set to the size of its derivative
f ′ on that set. This is quite intuitive—the derivative measures the rate of
increase of f, so it seems natural that this should be related to how much the
size of a set is increased when passed through f.

Note (typed in 2019): This lemma can be found in the paper [Var65] by
Varberg. This seems to be the first published proof of this Growth Lemma,
although Varberg himself states that he found it given as an exercise in a 1955
text [Nat55] by Natanson! Perhaps the result was known in some circles, but
it is interesting to me that this basic result was not published until 1965,
much later than what we usually think of as the “development period” for
most of the other theorems presented in this text.

Note Added : Recently (2020) I discovered that the text

J. J. Benedetto andW. Czaja, Integration and Modern Analysis, Birkhäuser, Boston,
2009.

states that a proof of the Growth Lemmas appears in a text by Saks that
appeared in 1937. An English translation is available:

S. Saks, Theory of the Integral, Second revised edition, English translation by
L. C. Young, Dover, New York, 1964.

Indeed, the two Growth Lemmas are Lemma VII.6.3 and Theorem VII.6.5
in Saks’ text. I discuss this in somewhat more detail in the following paper,
which gives a streamlined presentation of the main material from Chapters 5
and 6.

C. Heil, Absolute Continuity and the Banach–Zaretsky Theorem, in: “Excursions
in Harmonic Analysis,” Volume 6, M. Hirn et al., eds., Birkhäuser, Cham (2021),
pp. 27–51.

A recording of a related video lecture can be found at

https://www.youtube.com/watch?v=YSwNcVhV18w

Note: One of the few textbooks that includes results related to the Growth
Lemmas is Bruckner, Bruckner, and Thompson [BBT97]. They prove some-
what more general versions of the Growth Lemmas stated in terms of derived
numbers instead of derivatives (e.g., see Lemma 7.9 in [BBT97]). Our proof
of Growth Lemma I is inspired by the proof given in [BBT97].

Corollary 6.2.2. Mention briefly. The proof is nice but somewhat long, so I
assign it as reading. It is only needed for a couple of problems and in Section
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6.5, which I usually do not cover in class anyway. The two Growth Lemmas
are the important results of this section.

Note: Here are some details of claims made in the proof of Corollary 6.2.2.

First we demonstrate that D = ∪Dn. We have Dn ⊆ D by definition,
so certainly ∪Dn ⊆ D. On the other hand, if we choose x ∈ D, then
f ′(x) exists and is nonzero. Set ε = |f ′(x)|. Since the derivative exists
at x, there is a δ > 0 such that

0 < |y − x| < δ =⇒
∣∣∣∣
f(y)− f(x)

y − x

∣∣∣∣ >
ε

2
.

Choose n large enough that

1

n
< δ and

1

n
<
ε

2
.

If we choose any y such that 0 < |y − x| < 1
n , then we have |y − x| < δ,

and therefore ∣∣∣∣
f(y)− f(x)

y − x

∣∣∣∣ >
ε

2
>

1

n
.

Therefore x ∈ Dn. This shows that D ⊆ ∪Dn.
Second, we verify that Dn∩J =

⋃
kAk. By definition, Ak ⊆ Dn∩J for

every k. Conversely, choose any point x ∈ Dn ∩ J. Since Dn ⊆ D ⊆ E,
we have f(x) ∈ f(E) ⊆ ⋃

Qk, so f(x) ∈ Qk for some k and therefore
x ∈ f−1(Qk) for that k. Therefore x ∈ f−1(Qk) ∩Dn ∩ J = Ak.

Finally, we check that f(Ak) ⊆ Qk. If we choose y ∈ f(Ak), then y =
f(x) for some x ∈ Ak. By definition of Ak, this implies that x ∈ f−1(Qk),
and this tells us that f(x) ∈ Qk. Hence y = f(x) ∈ Qk.

Corollary 6.2.3. Mention briefly.

Lemma 6.2.4 (Growth Lemma II). State and prove.

Note: This proof includes another one of those “stupidly simple” but
extremely useful tricks. For this proof it is basic arithmetic: the fact that
k = (k − 1) + 1 is used in the final string of inequalities!

Section 6.3: The Banach–Zaretsky Theorem

The Banach–Zaretsky Theorem is one of my favorite results. I believe that
absolute continuity is absolutely fundamental to the study of real analysis,
but in many courses the only thing we learn is that AC functions are the ones
for which the Fundamental Theorem of Calculus holds. The Banach–Zaretsky
Theorem shines another light on the subject: AC functions are essentially the
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continuous functions that map sets of measure zero to sets of measure zero,
and measurable sets to measurable sets. AC functions do not do “strange”
things like blowing up a set of measure zero into a set with positive measure.

Theorem 6.3.1 (Banach–Zaretsky Theorem). State and prove. This is
a really beautiful theorem.

Note: In my opinion, the Banach–Zaretsky Theorem is central to classi-
cal analysis, yet it seems to be one of the most overlooked theorems in the
standard developments of this field.

Note: Zaretsky is sometimes transliterated as Zarecki.

Note: The hypothesis that f maps sets of measure zero to sets of measure
zero is referred to in [BBT97] as Lusin’s Condition.

Note: If f is complex-valued, then the appropriate hypothesis is not that
f maps sets of measure zero to sets of measure zero. The issue is that a
subset of C can have measure zero even though its restriction to the real (or
imaginary) axis has positive measure (compare Problem 6.3.5). Instead, the
criterion is that both the real and imaginary parts of f should map sets of
measure zero to sets of measure zero.

Corollary 6.3.2. State. This is an immediate consequence of results from
Chapter 2.

Note: Example 5.1.4 showed that the Cantor–Lebesgue function ϕ maps
a set with measure zero to a set with measure zero. Applying Theorem 6.3.1,
this gives us another proof that ϕ is not absolutely continuous on [0, 1].

Note: Even though an absolutely continuous function must map sets with
measure zero to sets with measure zero, the inverse image f−1(Z) of a set
with |Z| = 0 need not have measure zero. For example, if f is constant on
[a, b], say f = c, then f is absolutely continuous and Z = {c} has measure
zero, but f−1(Z) = [a, b] has positive measure.

Note: Even though an absolutely continuous function maps measurable
sets to measurable sets, the inverse image f−1(E) of a Lebesgue measur-
able set under an absolutely continuous function f need not be measurable.
For example, see the construction by Spătaru of an absolutely continuous,
strictly increasing function f : [0, 1] → [0, 1] such that f−1 is not absolutely
continuous:

S. Spătaru, An absolutely continuous function whose inverse function is
not absolutely continuous, Note Mat., 23 (2004/05), pp. 47–49.

Corollary 6.3.3. State and prove.

Note: We will see an application of Corollary 6.3.3 in the proof of Theorem
9.2.14, which concerns the decay and smoothness properties of the Fourier
transform of a function in L1(R).
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Note: Problem 6.3.8 asks for the following extension of Corollary 6.3.3: If
f is continuous, is differentiable at all but countably many points of [a, b], and
f ′ ∈ L1[a, b], then f is absolutely continuous. This is actually easy to prove
using the Banach–Zaretsky Theorem. Yet Folland (whose book is a favorite
of mine, even though he does not present Banach–Zaretsky), states in his
end of chapter notes (p. 110 of [Fol99]) that the result of Problem 6.3.8 “is
a highly nontrivial theorem”. The Cantor–Lebesgue function ϕ shows that
this statement cannot be extended to functions that are not differentiable at
uncountably many points.

Note: The function |x|3/2 sin 1
x is differentiable everywhere on [0, 1] and has

an integrable but unbounded derivative. The “simpler” function f(x) = x1/2

almost satisfies the same requirements. This function is differentiable every-
where on [0, 1] except at the point x = 0, and its derivative f ′(x) = 1

2x
−1/2

is integrable on [0, 1]. Problem 6.3.8 therefore implies that f absolutely con-
tinuous on [0, 1].

Corollary 6.3.4 (AC + Singular Implies Constant). State and prove.

Note: One standard proof of this corollary uses the Vitali Covering Lemma
(details below). I think the Banach–Zaretsky proof is much more enlightening
(especially on the first encounter). The Vitali Covering Lemma does still
play a role, in that it was needed in Chapter 5 to prove that monotone
increasing functions are differentiable a.e., from which it follows that BV and
AC functions are differentiable a.e.

Following is a proof of Corollary 6.3.4 based directly on the Vitali Covering
Lemma (this exposition is adapted from [WZ77, Thm. 7.28]).

Corollary. If f : [a, b] → C is both absolutely continuous and singular,
then f is constant.

Proof. Suppose that f is both absolutely continuous and singular. We
will show that f(a) = f(b). Since the same argument can be applied to
any subinterval of [a, b], it follows from this that f is constant.

Since f is singular, E =
{
x ∈ (a, b) : f ′(x) = 0

}
is a set of full

measure, meaning that |E| = b− a.
Suppose that x ∈ E, and fix any ε > 0. Then, since f ′(x) = 0, we can

find a point yx > x such that we have both [x, yx] ⊆ (a, b) and

x < y < yx =⇒ |f(y)− f(x)|
y − x

< ε.

Then
B =

{
[x, y] : x ∈ E and x < y < yx

}

is a Vitali cover of E by closed intervals (compare Definition 5.3.2).
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By hypothesis, f is absolutely continuous. Fix ε > 0, and let δ be
the number corresponding to ε that is given by the definition of absolute
continuity (Definition 6.1.1). Applying the Vitali Covering Lemma (see
Theorem 5.3.3 and the inequalities that follow it), there exist finitely

many disjoint intervals
{
[xj , yj ]

}N

j=1
belonging to B such that

N∑

j=1

(yj − xj) > (b− a)− δ. (A)

Note that the fact that [xj , yj] ∈ B implies that

|f(yj)− f(xj)|
yj − xj

< ε, for j = 1, . . . , N. (B)

Set y0 = a and xN+1 = b. Then we have

a = y0 ≤ x1 < y1 < x2 < · · · < yN−1 < xN < yN ≤ xN+1 = b.

Considering equation (A), we conclude that

N∑

j=0

(xj+1 − yj) < δ. (C)

Since f is absolutely continuous, it follows from equation (C) that

N∑

j=0

|f(xj+1)− f(yj)| < ε.

On the other hand, equation (B) implies that

N∑

j=1

|f(yj)− f(xj)| < ε

N∑

j=1

(yj − xj) ≤ ε (b− a).

Hence

|f(b)− f(a)| ≤
N∑

j=0

|f(xj+1)− f(yj)| +

N∑

j=1

|f(yj)− f(xj)|

≤ ε + ε (b− a).

Since ε is arbitrary, we conclude that f(a) = f(b). ⊓⊔
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Important Extra Remark: Failure of the MVT for AC functions.
Absolutely continuous functions have many attractive properties. However,
it is not true that every theorem from undergraduate calculus about differen-
tiable functions extends to absolutely continuous functions. In particular, the
following example shows that the Mean Value Theorem can fail for absolutely

continuous functions. I usually mention this in class briefly.

The Mean Value Theorem states that if f is a continuous real-valued
function on a closed interval [a, b] and f is differentiable everywhere on
(a, b), then there exists a point c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

We cannot relax the hypotheses to assume just absolute continuity, or
even to just Lipschitzness, in this theorem. For example, f(x) = |x| is
Lipschitz and therefore absolutely continuous on [−1, 1]. The slope of the
secant line that joins the point

(
−1, f(−1)

)
to

(
1, f(1)

)
is zero, but there

is no point c ∈ (−1, 1) such that f ′(c) = 0.

Extra Problems for Section 6.3

1. Suppose that funjctions f, g ∈ AC[a, b] are such that f ′ = g′ a.e. Prove
that f = g + c for some constant c.

2. Prove that the function g defined in Problem 1.4.4(d) is absolutely con-
tinuous on [0, 12 ], even though it is not Hölder continuous on that interval for
any positive exponent.

3. Assume that f : R → R is continuous, and g : [a, b] → R is absolutely

continuous. Prove that G(x) =
∫ g(x)

0
f(t) dt is absolutely continuous on [a, b].

(b) Does part (a) still hold if we only assume that f is integrable? Either
prove that it does or give a counterexample.

4. Assume f0 ∈ L1[0, 1] is nonnegative, and for each integer n ≥ 0 define

fn+1(x) =

(∫ x

0

fn(t) dt

)1/2

, for x ∈ [0, 1].

Assume that f1(x) ≤ f0(x) for every x ∈ [0, 1].

(a) Prove that for each x ∈ [0, 1], the sequence {fn(x)}n∈N converges
monotonically to a nonnegative number f(x).
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(b) Prove that f is integrable on [0, 1], and f(x) =
(∫ x

0
f(t) dt

)1/2
for

x ∈ [0, 1].

(c) Prove that if x ∈ [0, 1] and f(x) > 0, then f is differentiable at x.
What is f ′(x)?

(d) Assuming f(x) > 0 for every x ∈ (0, 1], find an explicit simple formula
for f.

Section 6.4: The Fundamental Theorem of
Calculus

Lemma 6.4.1. State and prove.

Theorem 6.4.2 (Fundamental Theorem of Calculus). State and prove.
Together with the Banach–Zaretsky Theorem, we now see many reasons why
absolute continuity is important.

6.4.1 Applications of the FTC

Corollary 6.4.3. State and prove.

Theorem 6.4.4. State and prove.

Corollary 6.4.5. State and prove.

6.4.2 Integration by Parts

Theorem 6.4.6 (Integration by Parts). State and prove (or perhaps just
say that it follows by applying absolute continuity to the product rule, and
assign the proof for reading).

Theorem 6.4.7. This is a useful theorem and the proof is a nice application
of absolute continuity and integration by parts, but time constraints usually
require me to assign the theorem and its proof for reading.

Remark: An Extra Theorem. I usually do not prove this in class, but the
heart of the proof of the Classical Uncertainty Principle is a nice application of
absolute continuity and integration by parts. The mathematical formulation
of this result is often stated in terms of the Fourier transform of functions on
L2(R), but here is a version that omits mention of the Fourier transform. The
proof does use the Cauchy–Bunyakovski–Schwarz (CBS) Inequality, which
is the special case of Hölder’s Inequality for p = 2. Hölder’s Inequality is
proved in Chapter 7, and the CBS Inequality is proved for abstract Hilbert
spaces in Chapter 8. The L2-norm of a measurable function f is ‖f‖2 =(∫

|f(x)|2 dx
)1/2

, and L2(R) is the set of measurable functions whose L2-norm
is finite. One consequence of the CBS Inequality is that if g, h ∈ L2[a, b] then
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their product gh is integrable on [a, b]. Our convention in this discussion is
that ∞1/2 = ∞. A simpler version of this result where the domain is a finite
interval [a, b] is given in Extra Problem 12 below.

Theorem (Heart of the Uncertainty Principle). Assume that f ∈ L2(R)
is locally absolutely continuous. That is, assume that f ∈ AC[a, b] for
every finite interval [a, b] (note that this implies that f ′ exists a.e.). Then

‖f‖22 ≤ 2 ‖xf(x)‖2 ‖f ′‖2,

where the right-hand side of this inequality could be infinite. Explicitly,

∫ ∞

−∞
|f(x)|2 ≤ 2

(∫ ∞

−∞
|xf(x)|2

)1/2(∫ ∞

−∞
|f ′(x)|2

)1/2

.

Proof. If the right-hand side is infinite then there is nothing to prove,
so we may assume that xf(x) and f ′ are both square-integrable. As a
consequence, the product xf(x)f ′(x) is integrable.

The product of two absolutely continuous functions is absolutely con-
tinuous, so u(x) = xf(x) is absolutely continuous. At any point where f
is differentiable, which is almost everywhere, the Product Rule implies
that

u′(x) = xf ′(x) + f(x). (A)

The function v(x) = f(x) is also absolutely continuous. Since integration
by parts holds for absolutely continuous functions, we therefore compute
that for any a < b we have

∫ b

a

xf(x)f ′(x) dx =

∫ b

a

u(x) v′(x) dx

= u(b) v(b) − u(a) v(a) −
∫ b

a

u′(x) v(x) dx (integration by parts)

= b |f(b)|2 − a |f(a)|2 −
∫ b

a

(
xf ′(x) + f(x)

)
f(x) dx (by equation (A))

= b |f(b)|2 − a |f(a)|2 −
∫ b

a

xf ′(x)f(x) dx −
∫ b

a

|f(x)|2 dx.

Rearranging, we see that

2Re

(∫ b

a

xf(x)f ′(x) dx

)
=

∫ b

a

xf(x)f ′(x) dx +

∫ b

a

xf ′(x)f(x) dx
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= b |f(b)|2 − a |f(a)|2 −
∫ b

a

|f(x)|2 dx.

Since xf(x)f ′(x) and |f |2 are both integrable, if we fix a then the fol-
lowing limit exists:

lim
b→∞

b |f(b)|2

= lim
b→∞

(
2Re

(∫ b

a

xf(x)f ′(x) dx

)
+

∫ b

a

|f(x)|2 dx + a |f(a)|2
)

= 2Re

(∫ ∞

a

xf(x)f ′(x) dx

)
+

∫ ∞

a

|f(x)|2 dx + a |f(a)|2.

But f ∈ L2(R), so the only way that the limit of b |f(b)|2 can exist
is if it is zero. Similarly, the limit of a |f(a)|2 as a → −∞ exists, and
therefore it must be zero as well. Consequently, by applying the Cauchy–
Bunyakovski–Schwarz Inequality, we see that

‖f‖22 =

∫ ∞

−∞
|f(x)|2 dx

= −2Re

(∫ ∞

−∞
xf(x) f ′(x) dx

)

≤ 2

∫ ∞

−∞
|xf(x)f ′(x)| dx (

Re(−z) ≤ |z|
)

= 2 ‖xf(x)f ′(x)‖1

≤ 2 ‖xf(x)‖2 ‖f ′‖2 (CBS Inequality). ⊓⊔

Note: The main ideas of the proof just given appear in a 1928 text (in
German) by Hermann Weyl (1885–1955); also see the English translation
of Appendix 1 of Weyl’s book in

H. Weyl, The Theory of Groups and Quantum Mechanics, Dover,
New York, 1949.

In particular, although he does not justify its use and does not men-
tion absolute continuity, the key point in Weyl’s proof is integration of
x
(
f f̄

)′
(x) by parts. For more details, see the discussion in my forthcom-

ing text on harmonic analysis.

Extra Problems for Section 6.4

1. Assume that f is Lipschitz on [a, b], f(a) = f(b) = 0, and
∫ b

a
f(x)2 dx = 1.
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(a) Prove that Re

(∫ b

a

xf(x)f ′(x) dx

)
= −1

2
.

(b) Use the Cauchy–Bunyakovski–Schwarz (CBS) Inequality to prove that

(∫ b

a

|xf(x)|2 dx
)(∫ b

a

|f ′(x)|2 dx
)

≥ 1

4
.

2. Prove that if f ∈ AC[a, b] and f(a) = 0, then ‖f‖u ≤ ‖f ′‖1. Show by
example that the hypothesis of absolute continuity is necessary.

3. This problem gives an alternative (and more difficult) proof of integration
by parts for absolutely continuous functions, based on Fubini’s Theorem.

Fix f, g ∈ AC[a, b], and set E =
{
(x, y) ∈ [a, b]2 : x ≤ y

}
. Use Fubini’s

Theorem to show that the two iterated integrals

∫∫

E

f ′(x) g′(y) dx dy =

∫ b

a

(∫ y

a

f ′(x) dx

)
g′(y) dy

and ∫∫

E

f ′(x) g′(y) dy dx =

∫ b

a

f ′(x)

(∫ b

x

g′(y) dy

)
dx

are equal. Use this to prove that equation (6.12) (that is, the integration by
parts formula) holds.

Note: The method of this exercise can also be used to prove a more general
version of integration by parts that employs Riemann–Stieltjes integrals. For
more details, see [Fol99, Thm. 3.36] or [WZ77, Thm. 7.32].

4. Given a monotone increasing function f on [a, b], prove that the following
two statements are equivalent.

(a) f ∈ AC[a, b].

(b) For every function g ∈ AC[a, b] and every x ∈ [a, b],

∫ x

a

f(t) g′(t) dt +

∫ x

a

f ′(t) g(t) dt = f(x)g(x) − f(a)g(a).

5. Assume that f is monotone increasing on [a, b] and f(a) = 0. What can
you determine about the following functions?

(a) f ′, (b) F (x) =
∫ x

a
f ′(t) dt, (c) F ′, (d) G(x) =

∫ x

a
F ′(t) dt.

6. Assume that functions fn ∈ AC[a, b] are such that:

• each fn is monotone increasing on [a, b],

• fn(a) = 0 for every n,

• sup
n
fn(b) <∞, and



Guide and Extra Material c©2024 Christopher Heil 111

• the sequence {f ′
n(x)}n∈N is monotone increasing for a.e. x.

Prove that there exists an absolutely continuous function f on [a, b] such that
fn → f uniformly.

7. Suppose that {fn}n∈N is a sequence of absolutely continuous functions
on [a, b] such that fn(a) = 0 for every n and {f ′

n}n∈N is Cauchy in L1-norm.
Prove that there exists an absolutely continuous function f on [a, b] such that
fn → f uniformly.

8. Suppose that functions fn ∈ AC[a, b] are such that fn(a) = 0 for every n

and
∞∑

n=1
‖fn‖1 <∞. Show that:

(a) The series f(x) =
∞∑
n=1

fn(x) converges for every x,

(b) f ∈ AC[a, b], and

(c) f ′(x) =
∞∑

n=1
f ′
n(x) a.e.

9. Assume that f : R → [0,∞) is measurable, and ϕ : [0,∞) → [0,∞) is
monotonic increasing and absolutely continuous on every interval [0, b] with
b > 0. Prove that if ϕ(0) = 0, then

∫ ∞

−∞
(ϕ ◦ f)(x) dx =

∫ ∞

0

|{f > t}| ϕ′(t) dt.

10. Given f ∈ C1[a, b] and ε > 0, prove that there exists a polynomial p such
that ‖f − p‖C1 = ‖f − p‖u + ‖f ′ − p′‖u < ε.

11. Assume that f : R → R is monotone increasing, lim
x→−∞

f(x) = 0, and

lim
x→∞

f(x) = 1. Prove that f is absolutely continuous on every finite interval

[a, b] if and only if
∫∞
−∞ f ′(x) dx = 1.

12. Let X be the set of all absolutely continuous functions f ∈ AC[a, b] such
that f ′ ∈ L1[a, b].

(a) Prove that

‖f‖ =

∫ b

a

|f(x)| dx +

∫ b

a

|f ′(x)| dx

is a norm on X, and X is a Banach space with respect to this norm.

(b) Show that

|||f ||| = |f(a)| +

∫ b

a

|f ′(x)| dx



112 Guide and Extra Material c©2024 Christopher Heil

is a norm on X that defines the same convergence criterion as ‖ · ‖; that is,
it is a norm and if fn, f ∈ X then ‖f − fn‖ → 0 if and only if |||f − fn||| → 0.

(c) Show that ‖ ·‖ and ||| · ||| are equivalent norms on X ; that is, there exist
constants A, B > 0 such that A ‖f‖ ≤ |||f ||| ≤ B ‖f‖ for every f ∈ X.

13. Prove that if f ∈ AC[a, b] satisfies f(a) = 0, then

V [f2; a, b] ≤ V [f ; a, b]2.

14. Given a function f : [0, 1] → C, prove that f is absolutely continuous
on [0, 1] if and only if there exist Lipschitz functions fn on [0, 1] such that
V [f − fn] → 0 as n→ ∞.

Section 6.5: The Chain Rule and Changes of
Variable

The results in this section are elegant applications of absolute continuity, and
have practical application to situations that requires a nonlinear change of
variable. Unfortunately, there isn’t time to cover every nice result, so some
choices have to be made. Therefore I usually, although reluctantly, assign the
material in this section as reading.

Extra Problems for Section 6.5

1. Assume that f : R → R is continuous, and g : [a, b] → R is absolutely
continuous. Prove that

G(x) =

∫ g(x)

0

f(t) dt

is absolutely continuous on [a, b], and find G′.

(b) Does part (a) still hold if we only assume that f is integrable? Either
prove that it does or give a counterexample.

Section 6.6: Convex Functions and Jensen’s
Inequality

Jensen’s Inequality is also an elegant result, but it does not play much of a
role in this text. Therefore I assign this section as reading, and do not cover
it in class.

Note: Our proof of Theorem 6.6.10 is adapted from the proof in Folland’s
text [Fol99].

Problems. TYPO in Problem 6.6.14 in the text: Replace “f : E → R is
measurable” with “f : E → R is integrable”.
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Extra Problems for Section 6.6

1. Suppose that φ : (a, b) → R is convex. Prove that {φ < α} is a convex set
for each α ∈ R.

2. Prove that φ is convex on (a, b) if and only if φ is convex on (c, d) for all
a < c < d < b.

3. Suppose that φ : R → R satisfies

φ

(∫ 1

0

f(x) dx

)
≤

∫ 1

0

φ(f(x)) dx

for every bounded measurable function f : [0, 1] → R. Prove that φ is convex
on R.

4. (a) Prove that ϕ(x) = x lnx is convex on (0,∞).

(b) Let E be a measurable subset of Rd such that |E| <∞. Suppose that

f : E → (0,∞) is a measurable function that satisfies
1

|E|

∫

E

f = 1. Prove

that
1

|E|

∫

E

f(x) ln f(x) dx ≥ 0.

5. Fix 2 ≤ p <∞, and prove the following statements.

(a) f(t) = tp/2 is convex on (0, 1).

(b) ap + bp ≤ (a2 + b2)p/2 for all a, b ≥ 0.

(c) If 0 ≤ x ≤ 1, then

(
1− x

2

)p

+

(
1 + x

2

)p

≤ 1 + xp

2
.

(d) If a, b ∈ R, then

( |a− b|
2

)p

+

( |a+ b|
2

)p

≤ |a|p + |b|p
2

.

(e) If f, g ∈ Lp(E), then

∥∥∥∥
f − g

2

∥∥∥∥
p

p

+

∥∥∥∥
f + g

2

∥∥∥∥
p

p

≤ 1

2
‖f‖pp +

1

2
‖f‖pp.

(f) If 0 ≤ x ≤ 1, then 2 (1 + xp) ≤ (1 + x)p + (1− x)p.

(g) If f, g ∈ Lp(E), then

2 ‖f/2‖pp + 2 ‖g/2‖pp ≤
∥∥∥∥
f − g

2

∥∥∥∥
p

p

+

∥∥∥∥
f + g

2

∥∥∥∥
p

p

.
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CHAPTER 7: The Lp Spaces

Note: The ℓp spaces are covered in more detail in the online Alternative
Chapter 1, and additional problems and exercises can be found there.

Section 7.1: The ℓp Spaces

Definition 7.1.1 (p-Summable and Bounded Sequences). State.

Definition 7.1.2 (The ℓp Spaces). State.

Note: We often pronounce ℓp as “little ℓp” (and think of it familiarly as
“baby ℓp”). This is to emphasize that we are referring to the sequence space
ℓp rather than the Lebesgue space Lp(E) that will be defined in Section 7.2.
In situations where we need to consider ℓp and Lp(E) at the same time, we
often emphasize the distinction by referring to Lp as “Big Lp.” When Lp

appears alone, we usually do not say “Big,” but somehow it seems natural to
say “little ℓp” even when the only space we are discussing is ℓp.

Remark 7.1.3. Briefly mention.

Lemma 7.1.4. I usually mention this lemma in class but do not take time
to write it down.

Note: In statement (b) of the lemma, if ‖x‖p = ∞ or ‖y‖p = ∞ then the
right-hand side of the inequality is ∞, and so there is nothing to prove.

7.1.1 Hölder’s Inequality

Define the dual index.

Note: In terms of dual indices, the number p = 2 is the natural dividing
point of the extended interval [1,∞], since

1 ≤ p ≤ 2 ⇐⇒ 2 ≤ p′ ≤ ∞.

For this reason analysts often consider p = 2 to be the “midpoint” of the
extended interval [1,∞]. Alternatively, it may be more appropriate to think
of the index as being 1/p rather than p. The value of 1/p ranges through the
interval [0, 1], and 1/p = 1/2 corresponds to the actual midpoint of [0, 1]. We
will discuss Hilbert spaces and L2(E) extensively in Chapter 8.

Exercise 7.1.5 and Remark 7.1.6. Usually I explain that equation (7.3)
is a generalization of the arithmetic-geometric mean inequality, and say that
Exercise 7.1.5 gives one proof of this inequality. Two other proofs are also
mentioned in the text following Remark 7.1.6, one based on equation (7.4)
(which is a special case of an inequality due to Young), and one based on
Jensen’s Inequality (given earlier in Problem 6.6.12).
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Theorem 7.1.7 (Hölder’s Inequality). State and prove for 1 < p < ∞;
the endpoint cases are exercises.

Note: Equation (7.5) holds in the extended real sense for all sequences x
and y. If x /∈ ℓp or y /∈ ℓp

′

, then the right-hand side of equation (7.5) is
infinity, so the equation holds trivially. Of course, in that case we cannot
derive any conclusion about whether xy belongs to ℓ1 or not.

Note: “Hölder” is difficult for me to pronounce correctly, I have trouble
getting the German umlaut right. I usually settle for the Americanization
“Holder,” but ask if there are any German-speaking students in the class
who could give us the correct pronunciation.

7.1.2 Minkowski’s Inequality

Exercise 7.1.8 and Theorem 7.1.9 (Minkowski’s Inequality). State
and prove the theorem (which covers 1 < p <∞); the exercise is the endpoint
cases p = 1 and p = ∞.

Note: In various proofs, there are sometimes trivial cases that we do not
explicitly discuss, because they do not have a significant impact on the proof.
For example, at the end of the proof of Theorem 7.1.9, we can only divide
by ‖x+ y‖p−1

p if x+ y is not the zero vector. However, if x+ y = 0 then the
result is trivial, so we do not bother to mention this case in the text, even
though it technically does need to be considered.

Theorem 7.1.10. State.

Corollary 7.1.11. I usually make a brief mention that things carry over to
other countably infinite index sets, and that if I is finite then ℓp(I) is simply
Cd, so we have a whole suite of norms for Cd (and likewise for Rd if we only
use real scalars).

7.1.3 Convergence in the ℓp Spaces

Definition 7.1.12 (Convergence in ℓp). State. This is convergence in norm
in the space ℓp.

Definition 7.1.13 (Componentwise Convergence). State. Convergence
in ℓp-norm and componentwise convergence are each perfectly good conver-
gence criteria on ℓp, but one is the convergence notion induced from the norm
of ℓp, and the other is not.

Lemma 7.1.14. State (the proof should be obvious). Although convergence
in ℓp-norm implies componentwise convergence, the example after the lemma
shows that the converse fails in general. Hence these are not “equivalent”
convergence notions.

Note: In contrast, in the finite-dimensional Euclidean spaces Rd or Cd,
convergence with respect to the norm ‖ · ‖p is equivalent to componentwise
convergence.
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7.1.4 Completeness of the ℓp Spaces

Theorem 7.1.15 (Completeness of ℓp). Define Cauchy sequences, state
and prove the theorem.

Note: The text gives a proof of equation (7.16) based on Fatou’s Lemma
for series. Here is a direct (but longer) version of the same argument that
avoids appealing to Fatou.

If we fix ε > 0, then there is an N > 0 such that ‖xm − xn‖p < ε for
all m, n ≥ N. Choose any particular n ≥ N, and fix an integer M > 0.
Then, since M is finite,

M∑

k=1

|x(k)− xn(k)|p =

M∑

k=1

lim
m→∞

|xm(k)− xn(k)|p

= lim
m→∞

M∑

k=1

|xm(k)− xn(k)|p

≤ lim
m→∞

‖xm − xn‖pp ≤ εp.

Since this is true for every M, we conclude that

‖x− xn‖pp =

∞∑

k=1

|x(k) − xn(k)|p

= lim
M→∞

M∑

k=1

|x(k)− xn(k)|p ≤ εp.

Corollary 7.1.16. Mention.

Note: In fact, all norms on a finite-dimensional vector space X are equiva-
lent, and hence X is complete with respect to each of these norms (for some
proofs, see [Con90, Thm. III.3.1] or [Heil18, Thm. 3.7.2]). In contrast, an
infinite-dimensional normed space can be incomplete. One example is Cc(R)
with respect to the uniform norm, and another is c00 with respect to the
sup-norm.

7.1.5 ℓp for p < 1

Exercise 7.1.17 and Theorem 7.1.18. I usually write down the metric
for p < 1, but then just state that an exercise in the text shows that ℓp is a
complete metric space when p < 1.

Note: If p < 1 then ‖ · ‖pp satisfies the Triangle Inequality, but it is not
a norm because it does not satisfy the homogeneity requirement. Indeed,
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‖cx‖pp = |c|p ‖x‖pp. Furthermore, since open balls in ℓp are not convex when

p < 1, the metric dp cannot be induced from any norm. That is, if p < 1
then there does not exist any norm ‖ · ‖ on ℓp such that dp(x, y) = ‖x− y‖.
Convexity plays an important role in functional analysis (which I usually
cover in the second semester of this course).

7.1.6 c0 and c00

This section introduces c0 and c00. These are important spaces, and several
of the problems deal with properties of c0 and c00. Usually I define these
spaces and remark that the standard basis is a vector space basis (or Hamel

basis) for c00, but it is not a basis for c0 or ℓp in the usual vector space sense
because Hamel bases are defined using only finite linear combinations.

Note: c00 is a dense but proper subspace of ℓp for 1 ≤ p < ∞. In a finite-
dimensional normed space, every proper subspace is closed. However, c00 is
not a closed subspace of ℓp. Thus, an infinite-dimensional Banach space can

contain subspaces that are not closed. Even after many years I still find this
fact to be rather amazing.

Note: When dealing with infinite-dimensional Banach spaces it is often
important to consider generalizations of bases that allow the use of “infi-
nite linear combinations” instead of the finite linear combinations that are
employed in the usual vector space definition of a basis. This idea is made
precise in the notion of a Schauder basis, which we will touch on in Chapter 8
when we discuss orthonormal bases for Hilbert spaces. Also, Problem 7.4.11
shows that the standard basis E = {δn}n∈N is a Schauder basis for c0 (with
respect to the sup-norm), and if 1 ≤ p <∞ then E is a Schauder basis for ℓp

(with respect to the ℓp-norm).

Extra Problems for Section 7.1

1. Let w : N → (0,∞) be a fixed function. For each sequence of scalars
x = (xk)k∈N, set

‖x‖p,w =





( ∞∑

k=1

|xk|p w(k)p
)1/p

, 0 < p <∞,

sup
k∈N

|xk|w(k), p = ∞,

and define ℓpw =
{
x : ‖x‖p,w < ∞

}
. Prove that this weighted ℓp-space is a

Banach space for each index 1 ≤ p ≤ ∞.

2. Fix 1 < p <∞. Given x, y ∈ ℓp, prove that ‖x+ y‖p = ‖x‖p + ‖y‖p if and
only if x = 0 or y is a positive scalar multiple of x. What happens if p = 1
or p = ∞?
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3. We take F = R for this problem. Let R be the “closed first quadrant” in
ℓ1:

R =
{
x = (xk)k∈N ∈ ℓ1 : xk ≥ 0 for every k

}
.

(a) Determine, with proof, whether R is a closed subset of ℓ1.

(b) Challenge (it’s not what you expect): What is the boundary of R?

4. For each n ∈ N, define yn = (1, . . . , 1, 0, 0, . . . ), where the 1 is repeated n
times. As usual, the norm on c0 is the sup-norm ‖ · ‖∞. Part (a) of this
problem is a subset of Problem 7.4.11 in the text, but part (b) is extra.

(a) Show that {yn}n∈N is a Schauder basis for c0, That is, show that for
each x ∈ c0 there exist unique scalars cn(x) such that

x =

∞∑

n=1

cn(x) yn. (A)

Note that, by definition, an infinite series converges if the partial sums con-
verge in norm. Hence to prove that the series in equation (A) converges and
equals x, you must prove that

lim
N→∞

∥∥∥∥x −
N∑

n=1

cn(x) yn

∥∥∥∥
∞

= 0.

(b) Show that {yn}n∈N is a conditional Schauder basis for c0; that is, there
exists some x ∈ c0 such that the series in equation (A) does not converge un-
conditionally. To do this, demonstrate that there is some bijection σ : N → N

such that the reordered series
∞∑

n=1
cσ(n)(x) yσ(n) does not converge.

Note: In contrast, the standard basis is an unconditional basis for ℓp (for
finite p) and for c0 (with respect to ‖ · ‖∞).

5. This problem will show that any incomplete normed space can be naturally
embedded into a larger normed space that is complete.

Let X be a normed space that is not complete. Let C be the set of all
Cauchy sequences in X, and define a relation ∼ on C by declaring that if
F = {fn}n∈N and G = {gn}n∈N are two Cauchy sequences, then F ∼ G if
and only if lim

n→∞
‖fn − gn‖ = 0.

(a) Prove that ∼ is an equivalence relation on C.
(b) Let [F ] =

{
G : G ∼ F

}
denote the equivalence class of F with respect

to the relation ∼. Let X̃ be the set of all equivalence classes [F ]. Define the
norm of an equivalence class to be

∥∥ [F ]
∥∥
X̃

= lim
n→∞

‖fn‖.
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Prove that ‖ · ‖X̃ is well-defined and is a norm on X̃.

(c) Given f ∈ X, let [f ] denote the equivalence class of the Cauchy se-

quence {f, f, f, . . . }. Prove that T : f 7→ [f ] is an isometric map of X into X̃.

Show also that T (X) is a dense subspace of X̃ (so, in the sense of identifying

of X with T (X), we can consider X to be a subspace of X̃ ).

(d) Prove that X̃ is a Banach space with respect to ‖ · ‖X̃ . We call X̃ the
completion of X.

(e) Prove that X̃ is unique in the sense that if Y is a Banach space and
U : X → Y is a linear isometry such that U(X) is dense in Y, then there

exists a linear isometric bijection V : Y → X̃.

Remark: A mapping A is an isometry is ‖Af‖ = ‖f‖ for every f in the
domain of A.

Section 7.2: The Lebesgue Space Lp(E)

Definition 7.2.1 (The Lebesgue Space Lp(E)). State.

Remark 7.2.2. Mention.

7.2.1 Seminorm Properties of ‖ · ‖p
Exercises 7.2.3 and 7.2.4 (Hölder’s and Minkowski’s Inequalities).
These work just like they do for ℓp.

Theorem 7.2.5. State, emphasizing the almost everywhere uniqueness prop-
erty of the seminorm ‖ · ‖p.

7.2.2 Identifying Functions that are Equal Almost Ev-
erywhere

Notation 7.2.6 (Informal Convention for Elements of Lp(E)). Discuss,
but keep it brief. It’s very easy to get bogged down in an extended discussion
of the “correct” definition of the Lp spaces as sets of equivalence classes. This
is one case where the informal convention is both more clear and usually “less
dangerous” in some sense than the precise formal definition.

Exercise 7.2.7. Assign for reading.

Notation 7.2.8 (Continuity for Elements of Lp(E)). Discuss briefly.
This convention means that when we write

“the continuous function f(x) = e−|x| belongs to Lp(R),”

we recognize that any function g that equals e−|x| a.e. is the same element
of Lp(R), even though g need not be continuous. In the same way, we write

“Cc(R) ⊆ Lp(R),”
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implicitly recognizing that elements of Cc(R) are functions, while elements
of Lp(R) are really equivalence classes of functions that are equal a.e.

7.2.3 Lp(E) for 0 < p < 1

Exercise 7.2.9. Assign for reading.

Remark: Part (b) asks for a proof that Lp(E) is complete when 0 < p < 1.
This part really should have a pointer to the later Exercise 7.3.5, which
sketches a proof that Lp(E) is complete when 1 ≤ p <∞. The approach for
0 < p < 1 is entirely similar.

7.2.4 The Converse of Hölder’s Inequality

Theorem 7.2.10 (Converse of Hölder’s Inequality). State and prove.
Alternatively, the proof of the special case p = 2 is somewhat less cluttered
(see below); you could just prove it and refer to the text for the general case.

Proof of Theorem 7.2.10 for p = 2. If p = 2 then p′ = 2 as well.
Hölder’s Inequality gives us equation (7.20), so we just need to prove
that equality holds. Fix f ∈ Lp(E). If f = 0 a.e., then the result is
trivial, so we can assume that f is not the zero vector in Lp(E). By
choosing an appropriate representative of f, we can further assume that
f is finite at every point. That is, if needed we simply redefine f(x) at
any point in the set of measure zero where it takes the value ±∞ to be
some finite value, such as 0.

For each x, let α(x) be a scalar such that |α(x)| = 1 and α(x) f(x) =
|f(x)|. Explicitly, we can take

α(x) =

{
|f(x)|/f(x), if f(x) 6= 0,

0, if f(x) = 0.

This function α is measurable and bounded. Set

g(x) =
α(x) |f(x)|

‖f‖2
, for x ∈ E.

Then

‖g‖22 =

∫

E

( |f(x)|
‖f‖2

)2

dx =

∫
E
|f(x)|2 dx
‖f‖22

= 1.

Thus g is a unit vector in L2(E). Also,
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∫

E

fg dx =

∫

E

f(x)
α(x) |f(x)|

‖f‖2
dx

=

∫
E
|f(x)|2 dx
‖f‖2

=
‖f‖22
‖f‖2

= ‖f‖2.

This shows that equality holds in equation (7.21), and that the supremum
in that equation is achieved. ⊓⊔

An Extra Theorem. Although I usually do not present this in class, here is
a nice theorem (from Folland [Fol99]) that would fit well into the discussion of
the Converse to Hölder’s Inequality. This theorem is useful for characterizing
the dual space of Lp(E) (which is something that I prove in the second
semester of the course).

Theorem. Assume that E ⊆ Rd is measurable, and fix 1 ≤ p ≤ ∞. Let
S be the set of simple functions on E that vanish outside a set of finite
measure:

S =
{
φ :E → C : φ is simple and |{φ 6= 0}| <∞

}
.

Suppose that:

(a) g : E → F is Lebesgue measurable,

(b) φ g ∈ L1(E) for each φ ∈ S, and

(c) Mg = sup

{∣∣∣∣
∫

E

φ g

∣∣∣∣ : φ ∈ S, ‖φ‖p = 1

}
< ∞.

Then g ∈ Lp′

(E) and ‖g‖p′ =Mg.

Proof. By Hölder’s Inequality, if φ ∈ S then

∣∣∣∣
∫

E

φ g

∣∣∣∣ ≤ ‖φ‖p ‖g‖p′,

so we automatically have Mg ≤ ‖g‖p′.
Let α be a measurable function with unit modulus such that

|g(x)| = α(x) g(x), for all x ∈ E.

Step 1. Fix any function φ ∈ S. Then φ ∈ Lp(E) and, by the definition
of Mg, ∣∣∣∣

∫

E

φ g

∣∣∣∣ ≤ Mg ‖φ‖p.
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We will extend this formula from functions φ ∈ S to all bounded mea-
surable functions f on E that vanish outside a set of finite measure.

Suppose that f is bounded and measurable, and that f is nonzero only
on a set A of finite measure. Then χA ∈ S, so χA g ∈ L1(E). Since f is
bounded and zero outside of A, we therefore have fg ∈ L1(E).

By our standard approximation theorems, we know that we can find
simple functions φk such that φk → f pointwise a.e. and |φk| ≤ |f | for
every k. Each φk belongs to S, and we have that φk g → fg pointwise a.e.
and |φk g| ≤ |fg| ∈ L1(E) for every k. Therefore, by the Dominated
Convergence Theorem,

∣∣∣∣
∫

E

fg

∣∣∣∣ = lim
k→∞

∣∣∣∣
∫

E

φk g

∣∣∣∣ ≤ lim
k→∞

Mg ‖φk‖p ≤ Mg ‖f‖p. (A)

Step 2. Suppose that 1 < p < ∞, in which case 1 < p′ < ∞. If g is
the zero function (or is zero at almost every point) then there is nothing
to prove, so we can assume that g is not zero at almost every point.

Let φk be simple functions on E such that 0 ≤ φk ր |g|p′

. If necessary,
by replacing φk with φk · χE∩[−k,k] we may assume that each φk vanishes
outside a set of finite measure. Since each φk is nonnegative, we can define

gk = αφ
1/p
k .

Motivation:

|gk| = φ
1/p
k = φ

1− 1

p′

k ≈
(
|g|p′)1− 1

p′ = |g|p′−1,

and therefore
|gk g| ≈ |g|p′

.

More precisely, since |gk| = φ
1/p
k , we have

‖gk‖p =

(∫

E

|gk|p
)1/p

=

∣∣∣∣
∫

E

φk

∣∣∣∣
1/p

= ‖φk‖1/p1

and
φk = φ

1/p
k φ

1/p′

k ≤ φ
1/p
k |g| = φ

1/p
k α g = gk g.

Further, each gk is bounded and vanishes outside a set of finite measure,
so by equation (A) we have

‖φk‖1/p1 ‖φk‖1/p
′

1 = ‖φk‖1

=

∫

E

φk
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≤
∫

E

gk g

≤ Mg ‖gk‖p = Mg ‖φk‖1/p1 .

Since g is not zero a.e., it must be the case that φk is not zero a.e. for all
large enough k. Thus ‖φk‖1 6= 0 for large k, so the preceding inequality
reduces to

‖φk‖1/p
′

1 ≤ Mg, (B)

for all large enough k. Using Fatou’s Lemma, we therefore compute that

‖g‖p
′

p′ =

∫

E

|g|p′

=

∫

E

lim inf
k→∞

|φk|

≤ lim inf
k→∞

∫

E

|φk| (Fatou)

= lim inf
k→∞

‖φk‖1 ≤ Mp′

g . (by equation (B))

This implies that g ∈ Lp′

(E) and ‖g‖p′ ≤Mg.

Step 3. Suppose that p = 1, so p′ = ∞. Fix ε > 0, and let

A =
{
|g| ≥Mg + ε

}
.

We will show that A must have measure zero.
Suppose that |A| > 0, and choose a measurable set B ⊆ A with

0 < |B| <∞. Let
f = αχB.

This function f is bounded and vanishes outside a set of finite measure,
so by equation (A) we have that

∣∣∣∣
∫

E

fg

∣∣∣∣ ≤ Mg ‖f‖1 = Mg |B|.

However, ∫

E

fg =

∫

B

αg =

∫

B

|g| ≥ (Mg + ε) |B|.

Therefore
(Mg + ε) |B| ≤ Mg |B|,

which is a contradiction. Consequently, we must have |A| = 0, which
implies |g| ≤ Mg + ε almost everywhere. Therefore ‖g‖∞ ≤ Mg + ε.
Since this is true for every ε > 0, we conclude that ‖g‖∞ ≤Mg <∞.

Step 4. Suppose that p = ∞, so p′ = 1. Set
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gk = αχE∩ [−k,k].

Then gk is bounded and vanishes outside a set of finite measure, so

∫

E∩ [−k,k]

|g| =
∫

E

gk g ≤ Mg ‖gk‖∞ = Mg.

Since this is true for every k, we see that

‖g‖1 =

∫

E

|g| ≤ Mg < ∞.

Hence g ∈ L1(E). ⊓⊔

Extra Problems for Section 7.2

1. Suppose that 1 ≤ p, q ≤ ∞ with p 6= q. Find a function f such that
106 < ‖f‖p <∞ and ‖f‖q < 10−6.

2. Prove the following statements.

(a) Cc(R) ( Lp(R) for every 0 < p ≤ ∞.

(b) C0(R) is not contained in Lp(R) for any 0 < p < ∞. In particular,

f(x) =
(
1 +

∣∣ln |x|
∣∣)−1

belongs to C0(R) but f /∈ Lp(R) for any 0 < p <∞.

(c) Lp(R) is not contained in C0(R) for any 0 < p < ∞. In fact, if p is
finite then there exists a continuous but unbounded function that belongs to
Lp(R).

3. Fix 1 ≤ p ≤ ∞. Prove that the norm ‖ · ‖p is translation-invariant on

Lp(Rd). That is, ‖Taf‖p = ‖f‖p for all f ∈ Lp(Rd) and a ∈ Rd, where
Taf(x) = f(x− a).

4. Fix 1 ≤ p ≤ ∞, and let E ⊆ Rd be measurable. Show that if functions f,
g : E → F are measurable on E and finite a.e., then ‖f + g‖p ≤ ‖f‖p + ‖g‖p
(note that these quantities might be infinite).

5. Show that if f ∈ L3[−1, 1], then

∫ 1

−1

f(x)√
|x|

dx exists and is a finite scalar.

6. Let E ⊆ Rd be measurable. Prove that if f ∈ Lp(E) and p > 4/3, then

lim
t→0+

∫ t

0

x−1/4f(x) dx = 0.
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7. Fix 1 ≤ p < ∞ and let E ⊆ Rd be measurable. Given f ∈ Lp(E), prove
that lim

t→∞
tp
∣∣{|f | > t}

∣∣ = 0.

8. (FromWheeden and Zygmund [WZ77]) Assume that E ⊆ Rd is measurable
and 0 < |E| <∞. For 1 ≤ p <∞ set

Np[f ] =

(
1

|E|

∫

E

|f |p
)1/p

, for f ∈ Lp(E).

Prove the following statements.

(a) If 1 ≤ p1 < p2 <∞ then Np1
[f ] ≤ Np2

[f ].

(b) Np[f + g] ≤ Np[f ] +Np[g] for f, g ∈ Lp(E).

(c) N1[fg] ≤ Np[f ]Np[g] for f ∈ Lp(E), g ∈ Lp′

(E).

(d) If f ∈ Lp(E) for some p <∞, then lim
p→∞

Np[f ] = ‖f‖∞.

Quoting [WZ77]: “Thus, Np behaves like ‖·‖p but has the advantage of being
monotonic in p.”

9. Let E ⊆ Rd be measurable and fix 1 < p < ∞. Choose functions f, g ∈
Lp(E) with g 6= 0 (that is, g is not the zero vector in Lp(E)). Prove that if
equality holds in Minkowski’s Inequality (so ‖f + g‖p = ‖f‖p + ‖g‖p), then
f is a scalar multiple of g.

10. (This problem is a special case of Problem 7.2.16, but the point is to
work it directly; in fact it may give some insight into the more general result
of Problem 7.2.16.) Given 0 < p < q ≤ ∞, prove the following statements.

(a) Lq[0, 1] ( Lp[0, 1], and ‖f‖p ≤ ‖f‖q for all f ∈ Lp[0, 1].

(b) Lp(R) is not contained in Lq(R), and Lq(R) is not contained in Lp(R).

11. Formulate and prove an analogue of the Converse to Hölder’s Inequality
(Theorem 7.2.10) for the ℓp spaces.

12. Prove that equation (7.21) in the converse to Hölder’s Inequality holds
in the extended real sense for all f ∈ Lp

loc(E), even if f /∈ Lp(E). That is,
assume E ⊆ Rd is measurable, fix 1 ≤ p ≤ ∞, and let f : E → F be any
measurable function such that ‖f · χE∩K‖p <∞ for every compact K ⊆ Rd.
Prove that

sup
‖g‖p′=1

∣∣∣∣
∫

E

fg

∣∣∣∣ = ‖f‖p.

13. This problem, which is a special case of Hardy’s Inequalities, appears later
in the text as Problem 8.1.14, but we include it here because it is related to
the next few extra problems. Prove that if f ∈ L2[0,∞), then
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∣∣∣∣
∫ x

0

f(t) dt

∣∣∣∣
2

≤ 2x1/2
∫ x

0

t1/2 |f(t)|2 dt, for x ≥ 0.

Then define

F (x) =
1

x

∫ x

0

f(t) dt, for x ≥ 0,

and show that F ∈ L2[0,∞) and ‖F‖2 ≤ 2‖f‖2.

14. This problem will establish a special case of Hardy’s Inequalities. Given
1 < p <∞ and f ∈ L2[0,∞), let

F (x) =
1

x

∫ x

0

f(t) dt, x ≥ 0,

and show that F ∈ Lp[0,∞) and ‖F‖p ≤ p

p− 1
‖f‖p.

15. This problem will establish a version of Hardy’s Inequalities.

(a) Fix 1 ≤ p < ∞. Show that if α < −1, then there exists a constant
C(α, p) such that for any measurable function f : (0,∞) → [0,∞] we have

∫ ∞

0

(∫ x

0

f(t) dt

)p

xα dx ≤ C(α, p)

∫ ∞

0

f(t)p tα+p dt, (A)

while if α > −1 then the inequality is

∫ ∞

0

(∫ ∞

x

f(t) dt

)p

xα dx ≤ C(α, p)

∫ ∞

0

f(t)p tα+p dt.

(b) Show that if α = −p < −1, then the optimal constant in equation (A)
is

C(−p, p) =
(
p′
)p

=

(
p

p− 1

)p

.

(c) Suppose that f ∈ Lp(R), where 1 < p <∞, and define

F (x) =
1

x

∫ x

0

|f(t)| dt, for x ∈ R.

Show that
‖F‖p ≤ p′ ‖f‖p, (B)

and prove that p′ is the best possible constant. Also show that equality holds
in equation (B) if and only if f = 0 a.e.

16. Let E ⊆ Rd be measurable. Assume that 0 < p < 1 and −∞ < q < 0
satisfy 1

p + 1
q = 1. Let f, g : E → F be measurable functions such that |f |p,

|g|q, and |fg| are all integrable. Prove that
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(∫

E

|f |p
)1/p (∫

E

|g|q
)1/q

≤
∫

E

|fg|.

Hint: Show that r = 1/p and s = −q/p are dual indices, and write |f |p =
|fg|p |g|−p.

17. Let S be the set of all nonnegative measurable functions on [0,∞) that

satisfy
∫ ∞
0
f(x)4 dx ≤ 1. Find sup

f∈S

∫∞
0
f(x)3 e−x dx.

18. For x > 0 define

f(x) = x−1/2
(
1 + | lnx|

)−1
=

1

x1/2
(
1 + | lnx|

) .

Prove that f ∈ Lp(0,∞) if and only if p = 2.

19. Suppose that f : [0, 1] → [0,∞) is measurable and
∫
A
f ≤ |A|1/2 for every

measurable set A in [0, 1]. Prove that f ∈ Lp[0, 1] for 1 ≤ p < 2.

Hint: This is a simpler version of Problem 7.2.22, but try to do it directly
by considering |{2k ≤ f < 2k+1}|.

20. Prove that if f ∈ L1(R) ∩ L4(R), then for every 1 ≤ p ≤ 4 we have both

(a) f ∈ Lp(R), and

(b) lim
k→∞

kp
∣∣{x ∈ R : |f(x)| > k}

∣∣ = 0.

21. Let E be a measurable subset of Rd with finite measure, and let LE be
the σ-algebra of all measurable subsets of E. Define the distance between
sets A, B ∈ LE to be d(A,B) = |A△B|.

(a) Prove that if we identify sets that differ only by a set of measure zero,
then d is a metric on LE , and LE is complete with respect to this metric.

(b) Prove that LE is not compact.

Section 7.3: Convergence in Lp-norm

Definition 7.3.1 (Convergence in Lp(E)). State.

Remark 7.3.2. State.

Note: Looking at equation (7.24) we see that, for finite p,

f ∈ Lp(E) ⇐⇒ |f |p ∈ L1(E),

and
fn → f in Lp(E) ⇐⇒ |f − fn|p → 0 in L1(E).
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Using this equivalence we can adapt previous L1-norm results to the setting
of Lp(E). For example, if we want to show that fn → f in Lp(E), we could
use the Dominated Convergence Theorem to prove that |f − fn|p → 0 in
L1(E). For an example of this type of argument, see the proof of Theorem
7.3.9.

Example 7.3.3 and Theorem 7.3.4. Mention briefly.

Note: Here are the details of the use of Tchebyshev’s Inequality in the
proof of Theorem 7.3.4.

Assume p < ∞ and fk → f in Lp(E). Choose any ε > 0. Then by
Tchebyshev’s Inequality,

∣∣{|f − fk| > ε}
∣∣ =

∣∣{|f − fk|p > εp}
∣∣

≤ 1

εp

∫

E

|f − fk|p

=
1

εp
‖f − fk‖pp → 0 as k → ∞.

Hence fk
m→ f.

The same result also holds for p = ∞. In that case
∣∣{|f−fk| > ε}

∣∣ = 0

for all k large enough, so we again conclude that fk
m→ f.

Exercise 7.3.5 and Theorem 7.3.6 (Lp(E) is a Banach Space). State
briefly, all of this is similar to the situation for ℓp. The proof of the theorem
is Exercise 7.3.5.

7.3.1 Dense Subsets of Lp(E)

Lemma 7.3.7. Review the definition of density for subsets of metric (or
normed) spaces and state the lemma, but encourage students to prove it on
their own. Density is briefly defined in Section 1.1.2, but the Alternative
Chapter 1 contains a more extensive discussion and review of density.

Definition 7.3.8 (Compact Support). State.

Note: If E is bounded, then E is contained in some box Q, which is a
compact set, and E\Q is empty, so every function on a bounded set E is
compactly supported.

Theorem 7.3.9 (Compactly Supported Functions are Dense). State.
The proof is easy, but it shows how to use the DCT for Lp-norm convergence.

Exercise 7.3.10, 7.3.11, and 7.3.12. Just mention that several density
results that we proved for L1 have extensions to Lp, including the following.



Guide and Extra Material c©2024 Christopher Heil 129

• The simple functions are dense in Lp(E) for 1 ≤ p ≤ ∞.

• The continuous, compactly supported functions are dense in Lp(Rd) for
finite p.

• The really simple functions are dense in Lp(R) for finite p.

Extra Problems for Section 7.3

1. This problem is a special case of Extra Problem 2, but it may be in-
structive to try this version first.

(a) Let E ⊆ Rd be measurable with |E| < ∞. Assume that {fn}n∈N

is a bounded sequence in L2(E) and there exists a function f such that
fn(x) → f(x) for a.e. x ∈ E. Prove that ‖f − fn‖1 → 0 as n→ ∞.

(b) Show that the conclusion of part (a) can fail if |E| = ∞.

2. Let E ⊆ Rd be measurable with |E| < ∞, and let fn be measurable
functions on E such that fn → f pointwise a.e. Show that if ‖fn‖2 ≤ 1 for
every n, then ‖f − fn‖p → 0 for each 1 ≤ p < 2.

Hint: Egorov’s Theorem and Hölder with indices p/2 and (p/2)′.

3. Assume that En are disjoint measurable sets in Rd, and fn ∈ Lp(En)
for each n. Extend fn to Rd by declaring it to be zero outside of En. Prove
that the series f =

∑
n
fn converges in Lp-norm if and only if

∑
n
‖fn‖pp < ∞,

and in this case we have ‖f‖pp =
∑
n
‖fn‖pp.

4. Fix 0 < p < 1. Using the metric dp(f, g) = ‖f − g‖pp on Lp(R), prove
that Cc(R) and the set of all really simple functions are dense in Lp(R).

5. Fix 1 ≤ p < ∞, and let E be a measurable subset of Rd such that
0 < |E| < ∞. Suppose that fn ∈ Lp(E), fn → f a.e., and sup

n
‖fn‖p < ∞.

Prove that f ∈ Lp(E) and ‖f − fn‖q → 0 for each index 1 ≤ q < p. However,
show by example that ‖f − fn‖p need not converge to 0. (This problem has

some similarities to Problem 7.3.21.)

6. Let E ⊆ Rd be measurable with 0 < |E| <∞. Assume that:

(a) fn ∈ L1(E) for every n,

(b) there exists a function f such that fn → f pointwise a.e., and

(c) there exists some 1 < p ≤ ∞ such that sup ‖fn‖p <∞.

Prove that f ∈ L1(E) and fn → f in L1-norm. Show by example that this
conclusion can fail if we allow p = 1 in assumption (c). (This problem has
some similarities to Problem 7.3.21.)

7. Given 1 ≤ p < ∞ and fn ∈ Lp(Rd), prove that {fn}n∈N is a Cauchy
sequence in Lp(R) if and only if the following three conditions hold.
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(a) {fn}n∈N is Cauchy in measure.

(b) For every ε > 0 there exists a δ > 0 such that if E is measurable and

|E| < δ then
∫
E
|fn|p < ε for every n.

(c) For every ε > 0 there exists a measurable set E with |E| < ∞ such

that
∫
EC |fn|p < ε for every n.

8. (From Folland). Let E be a measurable subset of Rd and fix indices
1 ≤ p < q ≤ ∞. Prove the following statements.

(a) ‖f‖ = inf
{
‖g‖p+‖h‖q : f = g+h with g ∈ Lp(E), h ∈ Lq(E)

}
defines

a norm on

Lp(E) + Lq(E) =
{
f + g : f ∈ Lp(E), g ∈ Lq(E)

}
.

(b) Lp(E) + Lq(E) is a Banach space with respect to this norm.

(c) If 1 ≤ p < r < q ≤ ∞ then Lr(E) ⊆ Lp(E) + Lq(E).

9. Suppose that {fn}n∈N is a sequence of functions in L1(R) such that

lim
n→∞

∫ ∞

−∞
fn(x) g(x) dx = g(0) for every g ∈ C0(R).

Prove that {fn}n∈N is not Cauchy in L1(R).

10. Let S be the set of all infinite sequences x = (xk)k∈N. This problem will
show that componentwise convergence is a metrizable convergence criterion
on S. Prove the following statements.

(a) If k ∈ N is fixed, then |||x|||k = |xk| for x ∈ S defines a seminorm on S.
However, ||| · |||k is not a norm on S.

(b) The following is a metric on S:

d(x, y) =

∞∑

k=1

2−k |xk − yk|
1 + |xk − yk|

for x, y ∈ S.

Hint: Show that if a, b, c ≥ 0 and a ≤ b+ c, then a
1+a ≤ b

1+b +
c

1+c .

(c) Given sequences xn, x ∈ S, we have that xn converges componentwise
to x if and only if d(x, xn) → 0 as n→ ∞.

(d) S is complete with respect to the metric d.

11. This problem will show that L1
loc(R) has a metrizable topology. Prove

the following statements.

(a) If N ∈ N is fixed, then |||f |||N = ‖f χ[−N,N ]‖1 defines a seminorm

on L1
loc(R). However, ||| · |||N is not a norm on L1

loc(R
d), even if we identify

functions that are equal a.e.
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(b) If we identify functions that are equal a.e., then

d(f, g) =
∞∑

N=1

2−N |||f − g|||N
1 + |||f − g|||N

for f, g ∈ L1
loc(R),

defines a metric on L1
loc(R).

Hint: Show that if a, b, c ≥ 0 and a ≤ b+ c, then a
1+a ≤ b

1+b +
c

1+c .

(c) fk → f with respect to the metric d if and only if for every compact
set K ⊆ R we have ‖(f − fk)χK‖1 → 0 as k → ∞.

(d) L1
loc(R) is complete with respect to the metric d.

12. (From Stroock [Str11]) Let E be a measurable subset of Rd such that
|E| <∞. Given measurable functions fn : E → F, prove that

fn
m→ f ⇐⇒ lim

n→∞

∫

E

max
{
|f − fn|, 1

}
= 0.

13. Let F(R) be the vector space of all functions f : R → C. Show that
pointwise convergence is not a normable criterion. That is, there does not
exist a norm ‖ · ‖ on F(R) such that

fk → f pointwise ⇐⇒ lim
k→∞

‖f − fk‖ = 0.

Hint: Shrinking boxes.

14. Let M[0, 1] be the space of all measurable functions f : [0, 1] → F
that are finite a.e. (where we identify functions that are equal a.e.). Show
that convergence in measure is not a normable criterion on M[0, 1], i.e.,
there does not exist a norm ‖ · ‖ on M[0, 1] such that

fk
m→ f ⇐⇒ lim

k→∞
‖f − fk‖ = 0.

Compare this to Problem 7.3.26 or Extra Problem 11 above, which show that
convergence in measure is metrizable.

15. Let M be the space of all Lebesgue measurable subsets of [0, 1], where
we identify any sets A and B such that their symmetric difference A△B has

measure zero. Given A, B ∈ M, set d(A,B) =
∫ 1

0
|χA −χB |. Prove that d is

a metric on M, and M is complete with respect to this metric.

16. Given 1 ≤ p ≤ ∞ and 1 ≤ q <∞, the Wiener amalgam space W (Lp, ℓq)
consists of those functions f ∈ Lp

loc(R) for which

‖f‖W (Lp,ℓq) =

(∑

k∈Z

‖f · χ[k,k+1]‖qLp

)1/q
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is finite. For q = ∞ we define

‖f‖W (Lp,ℓ∞) = sup
k∈Z

‖f · χ[k,k+1]‖Lp .

Prove that ‖ · ‖W (Lp,ℓq) is a norm, and W (Lp, ℓq) is a Banach space with
respect to this norm.

For more details on amalgam spaces, with applications to time-frequency
analysis, see [Heil11, Chap. 11] and [Grö01].

Section 7.4: Separability of Lp(E)

Definition 7.4.1 (Separable Space). State and discuss.

Theorem 7.4.2 (Separability of Lp(R)). State and prove.

Theorem 7.4.3 (Separability of Lp(E)). Mention.

Theorem 7.4.4. State and prove. Use this to prove that L∞(R) is nonsep-
arable.

Note: TYPO in the proof of this theorem. On line 2 of page 287, change
“‖t− xt‖∞ < 1

2 to “d(t, xt) <
1
2”.

Note: Nonseparable Banach spaces are “unpleasant” in many respects.
Unfortunately we will not see why in this semester. I cover basic functional
analysis in the second semester of this course, and we see there some of the
less pleasant features of L∞.

Problems: Note on Problem 7.4.11 in the text: This problem shows that
only a separable Banach space can have a Schauder basis. However, not ev-
ery separable Banach space has a Schauder basis! A separable (and reflexive)
Banach space that does not have a Schauder basis was constructed in the fol-
lowing paper, thereby settling negatively a longstanding open problem known
as the Basis Problem.

P. Enflo, A counterexample to the approximation problem in Banach
spaces, Acta Math., 130 (1973), pp. 309–317.

Extra Problems for Section 7.4

1. We say that a sequence {xn}n∈N in a Banach space X is ω-dependent

if there exist scalars cn, not all zero, such that
∞∑
n=1

cnxn = 0, where the

series converges in the norm of X. A sequence is ω-independent if it is not
ω-dependent.

(a) Prove that every Schauder basis is both complete and ω-independent.

(b) Let α and β be fixed nonzero scalars such that |α| > |β|. Let {δn}n∈N

be the sequence of standard basis vectors, and define



Guide and Extra Material c©2024 Christopher Heil 133

x0 = δ1 and xn = αδn + βδn+1, n ∈ N.

Prove that the sequence {xn}n≥0 is complete and finitely linearly independent
in ℓ2, but it is not ω-independent and therefore is not a Schauder basis for ℓ2.

2. Fix 0 < p < 1. Prove that Lp(R) is separable with respect to the metric
dp(f, g) = ‖f − g‖pp.
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CHAPTER 8: Hilbert Spaces and L2(E)

Section 8.1: Inner Products and Hilbert Spaces

In this first section we consider abstract inner product spaces, not just
the specific inner product space L2(E). This simplifies the notation, and also
allows us to concentrate on issues related to inner products without having to
worry about issues related to integrability. Depending on the preparation of
your students you may want to give more or less detail than I indicate below.
A review of norms and Banach spaces could be appropriate before beginning
this chapter. There is a short review of norms in Chapter 1, and an extended
discussion is in the Alternative Chapter 1.

8.1.1 The Definition of an Inner Product

Definition 8.1.1 (Semi-Inner Product, Inner Product). State.

Note: A function of two variables that is linear in the first variable and
antilinear in the second variable is called a sesquilinear form (the prefix
“sesqui-” means “one and a half”). In particular, a semi-inner product 〈·, ·〉
is a sesquilinear form. There are many different standard notations for semi-
inner products. While our preferred notation is 〈f, g〉, the notations [f, g],
(f, g), and 〈f |g〉 are also common.

Note: Sometimes an inner product is required to be antilinear in the first
variable and linear in the second (this is common in the physics literature).
This is also convenient in finite-dimensional linear algebra, since if we define
x · y = x1y1 + · · · + xdyd, then we can write x · y as the matrix product
x · y = xHy, where xH = [x1 · · · xd] is the Hermitian, or conjugate transpose,

of a vector x =



x1
...
xd


 ∈ Cd.

8.1.2 Properties of an Inner Product

Exercise 8.1.2. State.

Theorem 8.1.3 (Cauchy–Bunyakovski–Schwarz Inequality). State
and prove.

Lemma 8.1.4. State and prove.

Exercise 8.1.5. State.

8.1.3 Hilbert Spaces
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Definition 8.1.6 (Hilbert Space). State and discuss.

Example 8.1.7 (The ℓ2-Inner Product). State. We refer to an element x
of ℓ2 as a square-summable sequence.

Example 8.1.8 (The L2-Inner Product). State. We refer to an element
f of L2(E) as a square-integrable function.

Extra Problems for Section 8.1

1. If x ∈ H, where H is an inner product space, then ‖x‖ = sup
‖y‖=1

|〈x, y〉|.

2. Suppose that {xn}n∈N is a sequence in a Hilbert space H and there exists
a constant B ≥ 0 such that

∞∑

n=1

|〈x, xn〉|2 ≤ B ‖x‖2, for all x ∈ H.

(Such a sequence is called a Bessel sequence in H.) Prove that if (cn)n∈N is
a sequence of scalars with at most finitely many nonzero components, then

∥∥∥∥
∞∑

n=1

cnxn

∥∥∥∥
2

≤ B
∞∑

n=1

|cn|2.

Hint: Extra Problem 1 and equation (8.3).

3. Prove the following variation on the Polar Identity: If x and y are vectors
in an inner product space H, then

‖x+ iy‖2 = ‖x‖2 − 2 Im〈x, y〉 + ‖y‖2.

4. Let H be an inner product space.

(a) Characterize the vectors x, y ∈ H such that ‖x+ y‖2 = ‖x‖2 + ‖y‖2.
(b) Characterize the vectors x, y ∈ H such that ‖x+ y‖ = ‖x‖+ ‖y‖.

5. Let H be a Hilbert space. Recall that the Pythagorean Theorem states
that if 〈x, y〉 = 0, then ‖x+ y‖2 = ‖x‖2 + ‖y‖2.

(a) Prove that if H is a real Hilbert space then the converse to the Pytha-
gorean Theorem holds, i.e., if ‖x+ y‖2 = ‖x‖2 + ‖y‖2 then 〈x, y〉 6= 0.

(b) Show by example that if H is a complex Hilbert space then there can
exist vectors x, y ∈ H such that ‖x+ y‖2 = ‖x‖2 + ‖y‖2 but 〈x, y〉 6= 0.

6. Suppose that functions fn ∈ L2[0, 1] satisfy fn → f a.e. on [0, 1], and for
every n we have |fn(x)| ≤ x−1/3 a.e. Prove that 〈fn, g〉 → 〈f, g〉 for every
g ∈ L2[0, 1].
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7. Prove that if f ∈ L2[0, 1], then

g(x) =

∫ 1

0

f(t)

|x− t|1/2 dt

exists for a.e. x, the function g defined in this way is measurable, belongs to
L2[0, 1], and satisfies ‖g‖2 ≤ 23/2 ‖f‖2.

8. Let H be the set of all absolutely continuous functions f ∈ AC[a, b] such
that f(a) = 0 and f ′ ∈ L2[a, b]. Prove that H is a Hilbert space with respect

to the inner product 〈f, g〉 =
∫ b

a
f ′(x) g′(x) dx.

9. Show that if 1 ≤ p ≤ ∞ and p 6= 2, then the norm on ℓp is not induced
from any inner product, i.e., there is no inner product 〈·, ·〉 on ℓp such that
〈x, x〉 = ‖x‖2p for all x ∈ ℓp.

10. Fix f ∈ L2(0,∞), and let

F (x) =

∫ ∞

0

f(t)

1 + xt
dt, for x > 0.

Prove that F is continuous and differentiable on (0,∞).

11. Suppose that f : R → C is absolutely continuous on every compact in-
terval and f ′ ∈ L2(R). Prove that

∑
n∈Z

|f(n+ 1)− f(n)|2 <∞.

12. Let {xn}n∈N be a sequence of vectors in a Hilbert space H such that
‖xn‖ = 1 for every n. Suppose that “‖xm + xn‖ → 2 as m, n → ∞,” which
means precisely that for every ε > 0 there exists some N > 0 such that

m, n ≥ N =⇒ 2 − ε ≤ ‖xm + xn‖ ≤ 2 + ε.

Prove that there exists some x ∈ H such that xn → x.

13. Suppose that X is a complex Banach space whose norm ‖ · ‖ satisfies the
Parallelogram Law. Prove that

〈f, g〉 =
1

4

(
‖f + g‖2 − ‖f − g‖2 + i‖f + ig‖2 − i‖f − ig‖2

)

defines an inner product on X, and the norm induced from this inner product
is the original norm ‖ · ‖ on X, i.e., ‖f‖2 = 〈f, f〉 for every f ∈ X.

Note: The proof is long and tedious.

Section 8.2: Orthogonality
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Definition 8.2.1. State.

Lemma 8.2.2. State and prove. We will use this lemma to prove Theorem
8.2.11. It might be good for students to think about what this lemma means
geometrically.

8.2.1 Orthogonal Complements

Definition 8.2.3 (Orthogonal Subsets). State.

Definition 8.2.4 (Orthogonal Complement). State.

Exercise 8.2.5. State. This is a good practice exercise for students.

Lemma 8.2.6. State. Assign the proof as reading.

8.2.2 Orthogonal Projections

Theorem 8.2.7 (Closest Point Theorem). State. I usually just sketch
the proof of the existence of a closest point, especially how we get a Cauchy
sequence, and assign the details and the proof of uniqueness for reading.

Definition 8.2.8 (Orthogonal Projection). State.

Example 8.2.9. State; this is motivation for the next lemma.

Lemma 8.2.10. State and prove. This lemma suggests that we might expect
similar formulas to hold for infinite-dimensional closed subspaces, and we will
see that this is the case in Section 8.3.

Note: By using the Gram–Schmidt orthogonalization procedure, we will
prove in Theorem 8.3.10 that every finite-dimensional Hilbert space does have
an orthonormal basis.

8.2.3 Characterizations of the Orthogonal Projection

Theorem 8.2.11. State and prove the implication (a) ⇒ (b).

8.2.4 The Closed Span

Notation 8.2.12 (Closed Span). State. Explain that an upcoming theorem
will show that if A = {xn}n∈N is an orthonormal sequence then we will have a
very precise and convenient way to represent the elements of the closed span of
A (specifically, if A = {xn}n∈N is an orthonormal sequence and x ∈ span(A)

then x can be written as the “infinite linear combination” x =
∞∑
n=1

〈x, xn〉xn).
However, if A is a generic sequence, then the most we can usually say is that
span(A) is the smallest closed subspace that contains A (equivalently, it is
the set of all limits of finite linear combinations of elements of A). In general
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it is not true that every element of span(A) has the form
∞∑

n=1
cnxn for some

scalars cn (one counterexample is given in Problem 8.4.13).

Exercise 8.2.13 (Smallest Closed Subspace). State.

8.2.5 The Complement of the Complement

Lemma 8.2.14. State and prove.

Exercise 8.2.15. State.

Corollary 8.2.16. State. The proof follows immediately from Exercise 8.2.15
and Lemma 8.2.14.

8.2.6 Complete Sequences

Definition 8.2.17 (Complete Sequence). State.

Corollary 8.2.18. State.

Problems: Note on Problem 8.2.24 in the text: Suppose that {xn}n∈N is a
sequence in a Hilbert space H. A basic exercise is to show that the sequence
is finitely linearly independent if and only if no vector xm is a finite linear
combination of the vectors xn with n 6= m. That is

{xn}n∈N is independent ⇐⇒ xm /∈ span{xn}n6=m for every m ∈ N.

However, even if a sequence is linearly independent, it is possible that some
vector xm may be in the closed span of the remaining vectors; an example
is given in Extra Problem 1 below. Problem 8.2.24 defines a more stringent
kind of independence; specifically, we say that

{xn}n∈N is minimal ⇐⇒ xm /∈ span{xn}n6=m for every m ∈ N.

Problem 7.4.11 introduced the notion of a Schauder basis for a Banach space.
Every Schauder basis for a Hilbert space is both minimal and complete. How-
ever, a sequence that is both minimal and complete need not be a Schauder
basis. For more details on Schauder bases and minimal sequences we refer to
[Heil11].

Extra Problems for Section 8.2

1. Let {en}n∈N be an orthonormal sequence in a Hilbert space H. Then the
series

e0 =

∞∑

n=1

2−nen
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converges by Theorem 8.3.1. Prove that the sequence {en}n≥0 is finitely lin-
early independent, yet e0 belongs to the closed span of the remaining vectors:

e0 ∈ span{en}n>0.

Consequently {en}n≥0 is not minimal in the sense introduced in Problem
8.2.24, even though it is finitely linearly independent.

2. Let E be the set of all even functions in L2(R). What is the orthogonal
projection of f ∈ L2(R) onto E?

3. Let
M =

{
x = (xk)k∈N ∈ ℓ2(N) : x1 = x2 = x3

}
.

Prove that M is a closed subspace of ℓ2(N), and find the dimension of M⊥.

4. Prove that

M =
{
f ∈ L2(R) :

∫ 2

0

f(x) dx = 0
}

is a closed subspace of L2(R), and compute M⊥.

5. In the Hilbert space L2[−π, π], let f(x) = x2 and set

M = span{1, cosx, sinx, cos 2x, sin 2x}.

Find dist(f,M).

6. Suppose that {xn}n∈N is a sequence in a Hilbert space H, and y ∈ H is
orthogonal to xn for every n. Prove the following statements.

(a) y is orthogonal to every vector in span{xn}n∈N.

(b) y is orthogonal to every vector in span{xn}n∈N.

(c)
(
{xn}n∈N

)⊥
=

(
span{xn}n∈N

)⊥
.

7. Prove that C[a, b] is a proper, dense subspace of L2[a, b], and therefore
C[a, b] is not complete with respect to the L2-inner product. Give an explicit
example, with proof, of a sequence in C[a, b] that is Cauchy with respect to
the L2-norm but which does not converge to an element of C[a, b].

8. This problem will characterize all of the inner products on Cd. We say
that a d× d matrix A with complex entries is positive definite if Ax · x > 0
for all nonzero vectors x ∈ Cd, where x · y denotes the usual dot product of
vectors in Cd.

(a) Suppose that S is an invertible d×d matrix and Λ is a diagonal matrix
whose diagonal entries are all positive. Prove that A = SΛSH is a positive

definite matrix, where SH = ST is the complex conjugate of the transpose of
S (usually referred to as the Hermitian of S).
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Note: In fact, every positive definite matrix has this form, but that is not
needed for this problem.

(b) Show that if A is a positive definite d× d matrix, then

〈x, y〉A = Ax · y, for x, y ∈ Cd,

defines an inner product on Cd.

(c) Show that if 〈·, ·〉 is an inner product on Cd, then there exists some
positive definite d× d matrix A such that 〈·, ·〉 = 〈·, ·〉A.

9. Suppose that f, g : [a, b] → R are such that g is differentiable everywhere
on [a, b] and g′(x) = f(x)2. Prove that f ∈ L1[a, b].

10. Let H be a Hilbert space, and let U and V be any two subspaces of H
(not necessarily closed or orthogonal). The sum of U and V is

U + V = {f + g : f ∈ U, g ∈ V }.

Prove the following statements.

(a) U⊥ = U
⊥
.

(b) (U + V )⊥ = U⊥ ∩ V ⊥.

(c) U⊥ + V ⊥ ⊆ (U ∩ V )⊥.

(d) If U and V are closed subspaces, then U⊥ + V ⊥ = (U ∩ V )⊥.

11. Compute the maximum value of

∣∣∣∣
∫ 1

−1

x5f(x) dx

∣∣∣∣

over all f ∈ L2[−1, 1] such that ‖f‖2 = 1 and

∫ 1

−1

f(x) dx =

∫ 1

−1

xf(x) dx =

∫ 1

−1

x2f(x) dx = 0.

12. For this problem we take scalars to be real. Let S be the “closed first
quadrant” in ℓ2. That is, S is the set of all sequences y = (yk)k∈N in ℓ2 such
that yk ≥ 0 for every k.

(a) Show that S is a closed, convex subset of ℓ2.

(b) Given x ∈ ℓ2, find the sequence y ∈ S that is closest to x.

13. Let {xn}n∈N be a sequence in a Hilbert space H. Using the definitions
of a Schauder basis (Problem 7.4.11), a minimal sequence (Problem 8.2.24),
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an ω-independent sequence (Extra Problems to Section 7.4), and a linearly

independent sequence, prove the following implications:

Schauder basis =⇒ minimal =⇒ ω-independent =⇒ independent.

Show by example that none of the converses to these implications hold in
general.

Remark: For more details on Schauder bases and related topics, see
[Heil11].

Section 8.3: Orthonormal Sequences and
Orthonormal Bases

8.3.1 Orthonormal Sequences

Theorem 8.3.1. State and prove.

8.3.2 Unconditional Convergence

Definition 8.3.2 through Example 8.3.5. I usually state the definition of
unconditional convergence and discuss it briefly. However, this topic can just
be assigned for reading, as it is not crucial to any of the proofs.

Note: If
∞∑
n=1

cn is a series of real scalars that converges conditionally (that

is, it converges but does not converge unconditionally), then given any real

number x there exists a permutation σ : N → N such that
∞∑

n=1
cσ(n) converges

and equals x. There are also permutations such that
∞∑
n=1

cσ(n) diverges to

infinity or does not converge at all; see [Heil11, Lemma 3.3] for details.

8.3.3 Orthogonal Projections Revisited

Theorem 8.3.6. State, prove part (a). Given an orthonormal sequence
{en}n∈N, this theorem characterizes the orthogonal projection onto the closed
span of the sequence, and also tells us exactly how to represent the elements
of the closed span as “infinite linear combinations” of the vectors en.

8.3.4 Orthonormal Bases

Theorem 8.3.7. State, prove a sample implication.

Definition 8.3.8 (Orthonormal Basis). State.
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Note: If {en}n∈N is an orthonormal basis for H, then each x ∈ H has a

unique representation of the form x =
∞∑
n=1

cn(x)en. Using the terminology

of Banach space theory, this says that {en}n∈N is a Schauder basis for H
(compare Problem 7.4.11). In fact, because these series expansions converge
unconditionally for every x, the sequence is an unconditional Schauder basis ;
see [Heil11] or [Heil18].

Note: Suppose that {xn}n∈N is a sequence in H that is both complete
and linearly independent. This does not imply that {xn}n∈N is a Schauder
basis. Theorem 8.3.7 tells us that completeness plus orthonormality implies
Schauder. However, completeness plus independence is simply not enough on
its own to guarantee that we have a Schauder basis. A few counterexamples
appear in the problems, e.g., Problem 8.3.27 shows that the set of monomials
{xk}k≥0 is a complete, linearly independent sequence in L2[a, b], but it is not
a Schauder basis for that space. Indeed, that problem shows that there are
proper subsets of the monomials that are still complete in L2[a, b] (no proper
subset of a Schauder basis can be complete!).

Note: The Müntz–Szász Theorem (see [Heil11, Thm. 5.6] for the precise
statement) is a striking result that characterizes the sequences of monomials
that are complete in C[a, b]. Since C[a, b] is dense in L2[a, b], any such se-
quence will be complete in L2[a, b]. For the case 0 < a < b <∞, this theorem
says that if 0 < n1 ≤ n2 ≤ · · · is an increasing sequence of integers and
nk → ∞, then {xnk}k∈N is complete in C[a, b] if and only if

∞∑

k=1

1

nk
= ∞.

Example 8.3.9. Mention briefly.

8.3.5 Existence of an Orthonormal Basis

Theorem 8.3.10. It may be enough to just say that Gram–Schmidt works
in any finite-dimensional Hilbert space.

Theorem 8.3.11. State, perhaps briefly sketch the idea.
The only difficulty in this proof is that we need to know that H contains

a complete, linearly independent sequence, so that we have something to
apply Gram–Schmidt to and can be sure that the resulting sequence will be
complete. One way to do this is to note that if H is separable then it contains
a countable dense sequence {xn}n∈N. Such a sequence cannot be independent
(it is analogous to the set of rationals in the real line), but we can extract
a linearly independent subsequence through a recursive process. Choose the
first nonzero vector in the sequence, then proceed down the list until you find
the first vector that is not in the span of the previous ones, and repeat.
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8.3.6 The Legendre Polynomials

Discuss briefly.

8.3.7 The Haar System

Theorem 8.3.12 (The Haar System). State and prove.

Note: This proof is a nice application of the Lebesgue Differentiation The-
orem, but it does not give any insight into the construction of other wavelet
orthonormal bases for L2(R). Wavelets are discussed in detail in Chapter 12
of [Heil11].

8.3.8 Unitary Operators

The results of this subsection will not be used in the rest of the chapter;
indeed, they will only be referred to in Section 9.4, where they are used to
facilitate the definition of the Fourier transform on L2(R). Consequently I do
not cover this subsection in class.

For a more complete treatment of operator theory see [Heil18].

Note: The operator U(x) =
(
〈x, en〉

)
n∈N

defined in Theorem 8.3.17 is

called the analysis operator associated with the sequence {en}n∈N. For more
details, see [Heil11, Ch. 7] or [Heil18].

Extra Problems for Section 8.3

1. Prove that if a Hilbert space H is separable, then every orthogonal set of
nonzero vectors in H is countable.

2. Let u1, . . . , ud be the columns of a d×d matrix U. Prove that {u1, . . . , ud}
is an orthonormal basis for Cd if and only if UHU = I, where UH = UT is
the Hermitian of U.

3. Does there exist a function f ∈ L2[a, b] such that

∫ b

a

xf(x) dx = 1 and

∫ b

a

xk f(x) dx = 0, for k = 0, 2, 3, . . .?

4. Find real numbers a, b, and c that minimize the quantity

∫ 1

−1

|x3 − a− bx− cx2|2 dx.

5. Let {en}n∈N be an orthonormal basis for a Hilbert space H. Determine
whether the following are closed subsets of H :

S =

{
x ∈ H :

∞∑

n=1

|〈x, en〉| ≤ 1

}
, T =

{
x ∈ H :

∞∑

n=1

|〈x, en〉| ≥ 1

}
.
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6. Suppose that {en}n∈N is an orthonormal basis for a Hilbert space H, and

{xn}n∈N is an orthonormal sequence such that
∞∑

n=1
‖en − xn‖2 < ∞. Prove

that {xn}n∈N is an orthonormal basis for H.

Hint: Consider the case
∑ ‖en − xn‖2 < 1 first.

7. Suppose that {en}n∈N is an orthonormal basis for a Hilbert space H, and
{xn}n∈N is any sequence that satisfies

∑ ‖en − xn‖2 < ∞. Prove that the
orthogonal complement of span{xn}n∈N is finite-dimensional.

8. Show that if {xn}n∈N is a complete sequence in a Hilbert space H that
satisfies ∥∥∥∥

N∑

n=1

cnxn

∥∥∥∥
2

=
N∑

n=1

|cn|2

for all N ∈ N and scalars c1, . . . , cN , then {xn}n∈N is an orthonormal basis
for H.

9. Assume that {en(x)}n∈N is an orthonormal basis for L2[0, 1], and fix g in
L∞[0, 1]. Prove that {g(x) en(x)}n∈N is an orthonormal basis for L2[0, 1] if
and only if |g(x)| = 1 a.e. on [0, 1].

10. Let H be any infinite-dimensional Hilbert space. Prove that there exist
closed subspaces Kt ⊆ H for t ∈ R such that if s < t then Ks ( Kt.

11. The definition of weak convergence in a Hilbert space was given in Prob-
lem 8.1.10. Give an example of a sequence of functions {fn}n∈N in L2(R)
such that ‖fn‖2 = 1 for every n, yet fn converges weakly to 0 as n→ ∞.

12. Lebesgue measure on Rd has the properties that all balls have positive
and finite measure, and that measure is invariant under translation. Show
that if H is an infinite-dimensional Hilbert space, then there does not exist
a measure on H that has analogous properties.

Here, a “measure” is a function µ that is defined on some class of subsets
of H that includes all countable unions of open balls, is countably additive,
monotonic, translation-invariant on balls, and satisfies 0 < µ

(
Br(x)

)
< ∞

for every open ball.

Section 8.4: The Trigonometric System

Theorem 8.4.1. State and discuss. Orthonormality is easy, but completeness
is nontrivial. In Chapter 9 we will use convolution and approximate identities
to give a proof of Theorem 8.4.1. For now we will simply take the completeness
of the trigonometric system as given. A different (but still nontrivial) proof
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of completeness based on the Stone–Weierstrass Theorem can be found in
[Heil18, Thm. 4.7.2].

Theorem 8.4.2 (Fourier Series for L2[0, 1]). State and discuss.

Note: From the viewpoint of a harmonic analyst, the trigonometric system
is the most important example of an orthonormal basis.

Note: We can view the domain of a 1-periodic function as being the interval
[0, 1) under the operation of addition modulo 1. This is isomorphic to the
circle group S1 = {z ∈ C : |z| = 1} (under the operation of multiplication).
The circle is the one-dimensional torus, hence our use of the symbol T to
denote the domain of a 1-periodic function.

Exercise 8.4.3. Optional. Gabor systems are central to time-frequency anal-

ysis, and are discussed in detail in Chapter 11 of [Heil11], and in Gröchenig’s
text [Grö01].
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Extra: The HRT Conjecture

The HRT (Heil–Ramanathan–Topiwala) Conjecture is (as of 2024) an open
mathematical problem, set in the Hilbert space L2(R). It is also known as
the Linear Independence of Time-Frequency Translates Conjecture.

HRT Conjecture. If g ∈ L2(R) is not the zero function and {(αk, βk)}Nk=1

is any set of finitely many distinct points in R2, then {e2πiβkxg(x− αk)}Nk=1

is a linearly independent set of functions in L2(R). That is,

N∑

k=1

ck e
2πiβkxg(x− αk) = 0 a.e. =⇒ c1 = · · · = cN = 0. ♦

Despite the striking simplicity of the statement of the conjecture, it ap-
pears to be a surprisingly difficult problem. For expanded discussion of this
conjecture and the partial results that are known about it, see the exposition
in [Heil11, Sec. 11.9], or the following two survey papers.

C. Heil, Linear independence of finite Gabor systems, in: Harmonic Anal-

ysis and Applications, Birkhäuser, Boston, 2006, pp. 171–206.

C. Heil and D. Speegle, The HRT Conjecture and the Zero Divisor Con-
jecture for the Heisenberg group, in: Excursions in Harmonic Analysis, Vol-
ume 3, R. Balan et al., eds., Birkhäuser, Boston (2015), pp. 159–176.

The conjecture was originally stated in the following paper.

C. Heil, J. Ramanathan, and P. Topiwala, Linear independence of time-
frequency translates, Proc. Amer. Math. Soc. 124 (1996), pp. 2787–2795.

Various special cases where the conjecture can be proved to be true are
known. For example, the conjecture is known to be true if N is 1, 2, or 3.
However, the following special case of the conjecture is currently open!

HRT Subconjecture. If g ∈ L2(R) is not the zero function then the set of
four functions

{
g(x), g(x− 1), e 2πixg(x), e2πi

√
2xg(x−

√
3)
}

is linearly independent in L2(R). ♦
In fact, this subconjecture is open even if we impose the assumption that

g ∈ L2(R) is infinitely differentiable, or that g belongs to the Schwartz space

of infinitely differentiable, rapidly decreasing functions.
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CHAPTER 9: CONVOLUTION AND THE FOURIER
TRANSFORM

Sadly, I am typically unable to fit this chapter into a one-semester course—
there usually just isn’t enough time in the semester. This is unfortunate both
because this material is central to my field of harmonic analysis, and because
it contains many beautiful applications of topics from previous chapters. Be-
low I give some suggestions and comments for instructors who are presenting
this chapter, or for readers studying the chapter on their own.

Note: I do have a volume on harmonic analysis in preparation. That text
will present convolution, the Fourier transform, Fourier series, and other top-
ics in more detail than is found here.

Section 9.1: Convolution

Convolution was introduced and briefly discussed in Section 4.6.3; now we
take a more in-depth look at this operation.

Definition 9.1.1 (Convolution). State.

Note: It is important for this definition that R is a group (under addi-
tion in this case). Convolution can be defined more generally on any locally

compact group (although there is a difference between right-convolution and
left-convolution if the group is not abelian).

Exercise 9.1.2. State. Observe that supp(χ ∗ χ) ⊆ supp(χ) + supp(χ); this
is a general feature of convolutions (compare Problem 4.6.28).

Note: The nth-order B-spline function is Bn = χ[0,1] ∗ · · · ∗ χ[0,1], where
there are n factors in the convolution.

Theorem 9.1.3. State. This theorem is a review of properties of convolution
that were established in Section 4.6.3.

Exercise 9.1.4. State.

Theorem 9.1.5. State and prove.

Exercise 9.1.6. State.

Subsection 9.1.3 and Figure 9.2. Motivate convolution as an averaging
process.

Exercise 9.1.7. Motivate and state.

Definition 9.1.8 (Approximate Identities). Motivate and state.

Exercise 9.1.9. State.

Exercise 9.1.10 (The Fejér Kernel). State.

Theorem 9.1.11. State and prove.
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Theorem 9.1.12. State and prove.

Exercise 9.1.13 and Theorem 9.1.14 (Young’s Inequality). I would
just state the inequality ‖f ∗ g‖p ≤ ‖f‖p ‖g‖1, and refer to the details given
in the text for methods of proof.

Mention Problem 9.1.21, which establishes the more general form of
Young’s Inequality, ‖f ∗ g‖r ≤ ‖f‖p ‖g‖q where 1

p + 1
q = 1 + 1

r .

Theorem 9.1.15. State and prove.

Exercise 9.1.16. State.

Exercise 9.1.17. State.

Extra Problems for Section 9.1

1. Use approximate identities to prove that if f ∈ L1(R) satisfies
∫ ∞
−∞ fg = 0

for every g ∈ Cc(R), then f = 0 a.e.

2. Suppose that g ∈ L1(R) is such that for every ϕ ∈ C1
b (R) we have

(g ∗ ϕ′)(x) = ϕ(x+ h)− ϕ(x− h) for all x ∈ R.

Prove that g = χ[−h,h] a.e.

3. Define γ(x) = e−1/x2 χ(0,∞)(x), and prove the following statements.

(a) For each n ∈ N, there exists a polynomial pn of degree 3n such that

γ(n)(x) = pn(x
−1) e−x−2

χ(0,∞)(x).

(b) γ ∈ C∞(R) and γ(n)(0) = 0 for every n ≥ 0.

(c) If a < b then the function f(x) = γ(x− a) γ(b− x) belongs to C∞
c (R)

and satisfies f(x) > 0 for x ∈ (a, b) and f(x) = 0 for x /∈ (a, b).

4. (a) Suppose that f ∈ L1(R). Prove that f ∗ f = 0 a.e. if and only if f = 0
a.e.

(b) Use part (a) to prove that if A ⊆ R has positive and finite measure,
then A+A contains an open interval.

(c) Show that if A and B are subsets of R that each have positive measure,
then A+B contains an open interval.

5. Assume k ∈ L1(R) is given. Set r =
∫∞
−∞ k, and define kN (x) = Nk(Nx).

(a) Prove that if 1 ≤ p < ∞, then for each f ∈ Lp(R) we have that
f ∗ kN → rf in Lp-norm as N → ∞. Note that this includes the possibility
that r may be complex or zero.

(b) Prove that if f ∈ C0(R) then f ∗ kN → rf uniformly as N → ∞.
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6. Suppose that {fn}n∈N is a sequence of functions in L1(R) such that

lim
n→∞

∫ ∞

−∞
fn(x) g(x) dx = g(0), for every g ∈ C0(R).

Prove that {fn}n∈N is not Cauchy in L1(R).

Section 9.2: The Fourier Transform

Definition 9.2.1 (Fourier Transform on L1(R)). State.

Note: When speaking aloud, we usually pronounce the symbols f̂ as “f -
hat.”

Note: A trivial but often useful fact is that

f̂(0) =

∫ ∞

−∞
e−2πi0xf(x) dx =

∫ ∞

−∞
f(x) dx.

Remark 9.2.2. Discuss in as much detail as you feel appropriate.

Lemma 9.2.3. State and prove.

Note: Technically, the Dominated Convergence Theorem applies to se-
quences indexed by the natural numbers. To rigorously justify its application
in the proof of Lemma 9.2.3 (and in other similar instances), we should use
the approach of Problem 4.5.30 and consider all possible sequences ηk → 0.

Example 9.2.4. State and prove.

Note: The sinc function is also known as the cardinal sine, and indeed
“sinc” is a contraction of sinus cardinalis. The “cardinal” nature of the sinc
function is the fact that it is an interpolating function, because sinc(0) = 1
while sinc(n) = 0 for all integers n 6= 0.

Note: The Dirichlet function is

(
χ[−1/2π,1/2π]

)∧

(ξ) =
sin ξ

πξ
.

Theorem 9.2.5 (Riemann–Lebesgue Lemma). State and prove.

Note: Let F denote the Fourier transform as an operator. That is, consider
the linear mapping F(f) = f̂ that takes f to f̂ . The Riemann–Lebesgue
Lemma tells us that F : L1(R) → C0(R). Further, we saw earlier that

‖F(f)‖u = ‖f̂‖u ≤ ‖f‖1.

Using the language of operator theory, this inequality says that F is a bounded
operator from L1(R) into C0(R), because the norm of f̂ is no more than a fixed
constant (in this case the constant is 1) times the norm of f. Later we will
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see the Uniqueness Theorem, which tells us that F is injective. However, F
is not surjective; instead, the remarks after Theorem 9.2.5 say that the range
of F is a dense but proper subspace of C0(R). A (nontrivial) consequence of
these facts is that the inverse mapping from range(F) = A(R) back to L1(R)
is unbounded (this follows from the Open Mapping Theorem, which is usually
covered in the second semester of our graduate real analysis sequence).

Exercise 9.2.6. State.

Corollary 9.2.7. State and prove.

Note: A δ-function, if one existed, would be a function δ ∈ L1(R) that is
zero at all points except x = 0, yet has an “infinite spike” at x = 0 with
enough “mass” concentrated into the spike that

∫∞
−∞ δ(x) dx = 1. There is

no such function, for even if we did define

δ(x) =

{
∞, if x = 0,

0, if x 6= 0,
(A)

then δ is zero almost everywhere, and therefore
∫∞
−∞ δ(x) dx = 0. The func-

tion δ defined by equation (A) is not an identity for convolution—instead it
is a representative of the zero function in L1(R)!

Still, suppose for the moment that there were such a delta function. In
this case we would have

∫ ∞

−∞
f(x) δ(x) dx = f(0) (B)

for every f (but note that this equation does not hold because δ = 0 a.e.!).
Such a function δ does not exist, but even so it is not uncommon in the
literature to see δ defined by equation (A) and then used as in equation (B).
What is really happening here is one of the “standard abuses of notation” that
occur in mathematics. There does exist a measure δ for which the equality∫∞
−∞ f(x) dδ(x) = f(0) does hold. However, δ is not a function defined by

equation (A); rather it is the measure of sets defined by δ(E) = 1 if the set
E contains the origin, and δ(E) = 0 otherwise:

δ(E) =

{
1, if 0 ∈ E,

0, if 0 /∈ E.

The integral
∫∞
−∞ f(x) dδ(x) is not a Lebesgue integral of the function

f(x) δ(x), but instead is an integral of the function f with respect to the

measure δ. As long as we understand that notation is being abused and δ is
a measure rather than a function, then this abuse of notation is not usually
problematic. However, problems can arise when we begin to think that δ is
an actual function, rather than a measure.
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An alternative but essentially equivalent way to rigorously define δ is as a
distribution, or generalized function, instead of a measure.

Definition 9.2.8 (Inverse Fourier Transform on L1(R)). State.

Note: We usually pronounce the symbols
∨

f as “f -check.”

Theorem 9.2.9 (Inversion Formula). Motivate and state.

Lemma 9.2.10. Motivate and state.

Lemma 9.2.11. Motivate and state.

Proof of Theorem 9.2.9. Restate the theorem and prove.

Corollary 9.2.12. State and prove.

Note: An alternative proof is to apply Lemma 9.2.11 directly. Specifically,
if f̂ = 0 a.e., then that lemma implies that

(f ∗ wN )(x) =

∫ N

−N

f̂(ξ)

(
1− |ξ|

N

)
e2πiξx dξ = 0.

Since f ∗ wN → f in L1-norm, it follows that f = 0 a.e.

Theorem 9.2.13. State and prove.

Theorem 9.2.14. State and prove.

Corollary 9.2.15. State and prove.

Corollary 9.2.16. State and prove.

Note: There is a TYPO in Problem 9.2.20 in the text. Change the definition
“ψ = χ

[0, 1
2
) − χ

[− 1
2
,0]” to “ψ = χ

[− 1
2
,0) − χ

[0, 1
2
)”.

Section 9.3: Fourier Series

Introduction. Define Lp(T).

Note: We can view the domain of a 1-periodic function as being the interval
[0, 1) under the operation of addition modulo 1. This is isomorphic to the
circle group S1 = {z ∈ C : |z| = 1} (under the operation of multiplication).
The circle is the one-dimensional torus, hence our use of the symbol T to
denote the domain of a 1-periodic function.

Remark 9.3.1. Discuss briefly.

Exercise 9.3.2 (Riemann–Lebesgue Lemma). State.

Theorem 9.3.3. State and prove.

Exercise 9.3.4. State.

Definition 9.3.5 (Convolution). State.
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Exercise 9.3.6. State.

Definition 9.3.7 (Approximate Identity). State.

Exercise 9.3.8. State.

Exercise 9.3.9. State.

Lemma 9.3.10. Motivate by discussing the Fejér and Dirichlet kernels; state
and prove.

Theorem 9.3.11 (Inversion Formula). State and prove.

Corollary 9.3.12 (Uniqueness Theorem). State and prove.

Theorem 9.3.13. State and prove.

Corollary 9.3.14 (The Trigonometric System is an ONB). State and
prove.

Example 9.3.15 and the remarks following it. Discuss.

Theorem 9.3.16. State and discuss.

Theorem 9.3.17. State and discuss.

Theorem 9.3.18 (Carleson–Hunt Theorem). State and discuss.

Extra Problems for Section 9.3

1. Define an appropriate “dilation method” for constructing approximate
identities on T. For example, let k be any integrable function on R such

that k(x) = 0 for all x /∈ [0, 1) and
∫∞
−∞ k = 1. For each N ∈ N, set

gN (x) = N k(Nx) for x ∈ R. Then let kN be the 1-periodic extension of gN
from [0, 1) to the real line, i.e., let kN (x + j) = gN(x) for all x ∈ [0, 1) and
j ∈ Z. Prove that {kN}N∈N is an approproximate identity on T.

2. Assume that f is a measurable function on [a, b]. Given any δ, ε > 0, show
that there exists a function g ∈ AC[a, b] and a measurable set A ⊆ [a, b] such
that |A| < δ and sup

x/∈A

|f(x)− g(x)| < ε.

3. Given f ∈ L2(T) and a ∈ R, define Taf(x) = f(x − a). Suppose that
α ∈ R is irrational. Prove that f = Tαf a.e. if and only if f is equal almost
everywhere to a constant function.

4. Assume that a 1-periodic function f is absolutely continuous on [0, 1], and

∫ 1

0

f(x) dx =

∫ 1

0

f(x) e−2πix dx =

∫ 1

0

f(x) e2πix dx = 0.

Prove that ‖f ′‖2 ≥ 4π‖f‖2.



Guide and Extra Material c©2024 Christopher Heil 153

Section 9.4: The Fourier Transform on L2(R)

Lemma 9.4.2. Motivate, state, and prove.

Definition 9.4.3 (The Fourier Transform on L2(R)). Cover the discus-
sion given before the definition, which shows that the Fourier transform is
well-defined on L2(R). State the definition.

Definition 9.4.3 (The Fourier Transform on L2(R)).

Lemma 9.4.4. State and prove.

Lemma 9.4.5. State and prove.

Theorem 9.4.6. State and prove.

Example 9.4.7. Discuss.

Lemma 9.4.8. Assign for reading.

Extra Problems for Section 9.4

1. The text shows how to extend the Fourier transform from a dense subspace
of L2(R) to all of L2(R). This is a special case of the following more general
problem.

Let X and Z be metric spaces such that Z is complete, and let Y be a
proper dense subset of X. Suppose that f : Y → Z is uniformly continuous.
Prove that there exists a uniformly continuous function g : X → Z such that
g(x) = f(x) for every x ∈ Y.
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Extra: A Nowhere Differentiable Function

A continuous, nowhere differentiable function was constructed in 1830 by
B. Balzano but went unnoticed. (Note: Confirmation and references for these
statements are needed; if you have knowledge of these historical details please
let me know.) The first widely recognized continuous, nowhere differentiable
function was constructed by Karl Weierstrass (1815–1897). He showed that

g(x) =

∞∑

m=0

a−m cos(bmx) (A)

is nowhere differentiable if b is an odd integer and b/a > 1 + (3π/2). G. H.
Hardy (1877–1947) showed that the function g in equation (A) is nowhere
differentiable for every choice of real numbers b ≥ a > 1, as is the function

h(x) =

∞∑

m=0

a−m sin(bmx)

for the same range of parameters.
We will use the Fourier transform to give a construction of a similar con-

tinuous function that is not differentiable at any point. Our proof is adapted
from:

J. Johnsen, Simple proofs of nowhere-differentiability for Weierstrass’s
function and cases of slow growth, J. Fourier Anal. Appl., 16 (2010), pp. 17–
33.

A Nowhere Differentiable Function. Fix 0 < α ≤ 1 and define

g(x) =

∞∑

m=0

2−αm e2πi2
mx x ∈ R.

The series defining g converges absolutely with respect to the uniform
norm, so g is continuous (and 1-periodic, i.e., g(x+1) = g(x) for every x).
The real part of the function g corresponding to the choice α = 1/3 is
pictured in Figure 9.A.

Let K be any infinitely differentiable function such that K(1) = 1
and supp(K) ⊆

[
1
2 , 2

]
. Then K belongs to the Schwartz class S(R) that

was introduced in Problem 9.2.32.It is shown in that problem that the

Fourier transform maps S(R) onto itself. Therefore, the function k =
∨

K

belongs to S(R). Hence k̂ = K is infinitely differentiable, k̂(1) = 1, and

supp(k̂) ⊆
[
1
2 , 2

]
. In particular, k̂(n) = 0 for all integers n 6= 1. Therefore

∫ ∞

−∞
k = k̂(0) = 0,
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so if we set kλ(x) = λk(λx) then {kλ}λ∈N is not an approximate identity
in L1(R). Even so, it will still be useful for our analysis.

The function g is continuous and 1-periodic on R, so its convolution
with kλ is well-defined and belongs to Cb(R). Considering λ = 2n, we
compute that

(g ∗ k2n)(x) =

∫ ∞

−∞
g(x− y) k2n(y) dy

=

∞∑

m=0

2−αm e2πi2
mx

∫ ∞

−∞
e−2πi2my k2n(y) dy

=

∞∑

m=0

2−αm e2πi2
mx k̂2n(2

m)

=

∞∑

m=0

2−αm e2πi2
mx k̂(2m−n)

= 2−αn e2πi2
nx.

The interchange of integration and summation in the calculation above
can be justified by using Fubini’s Theorem.

Next, using the fact that
∫
k = 0 we see that

2(1−α)n e2πi2
nx = 2n (g ∗ k2n)(x) − 2n g(x)

∫ ∞

−∞
k2n(y) dy

=

∫ ∞

−∞

(
g(x− y) − g(x)

)
2nk(2ny) 2ndy

=

∫ ∞

−∞

g(x− y) − g(x)

y
2ny k(2ny) 2ndy

=

∫ ∞

−∞

g(x− 2−ny) − g(x)

2−ny
y k(y) dy. (B)

Now, if g is differentiable at x then the function

F (h) =
g(x− h)− g(x)

h

is bounded for h small, and it is also bounded for h large since g is
continuous and bounded. Let C be a constant such that |F (h)| ≤ C for
all h ∈ R. Then

|F (2−ny) yk(y)| ≤ C |yk(y)| ∈ L1(R).
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Therefore we can apply the Lebesgue Dominated Convergence Theorem
to equation (B) to obtain

lim
n→∞

2(1−α)n e2πi2
nx = lim

n→∞

∫ ∞

−∞

g(x− 2−ny) − g(x)

2−ny
y k(y) dy

= −g′(x)
∫ ∞

−∞
y k(y) dy.

However, since 0 < α ≤ 1 the quantity 2(1−α)n e2πi2
nx does not converge

as n → ∞. This contradiction implies that g cannot be differentiable
at x. Since x is arbitrary, we conclude that g is not differentiable at any
point.

0.2 0.4 0.6 0.8 1.0

-2

2

4

6

Fig. 9.A Real part of the nowhere differentiable function g corresponding to the choice
α = 1/3.


