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ABSTRACT

In this paper we outline the main ideas behind the recent proof of the authors that if a multivariate, multi-function
refinement equation with an arbitrary dilation matrix has a continuous, compactly supported solution which has
independent lattice translates, then the joint spectral radius of certain matrices restricted to an appropriate subspace
is strictly less than one.
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1. INTRODUCTION

In this paper we will sketch the essential ideas behind recent results on necessary conditions for the existence of
continuous multivariate multiscaling functions with arbitrary dilation matrices.

The result we describe is somewhat surprising when compared to most other well-known necessary conditions
for one-dimensional or single-function refinement equations. In particular, for the classical one-dimensional, single-
function refinement equation f(x) =

∑N
k=0 ck f(2x−k), it is known that a continuous, compactly supported solution

exists if and only if all infinite products of two appropriate matrices T0, T1 restricted to a certain invariant subspace W
converge.1–3 The entries of the matrices T0, T1 are the coefficients ck in a certain explicit order, but the subspace W
is determined only implicitly by the ck. With the additional hypothesis that integer translates of f are independent,
this subspace W can be shown to coincide with the subspace V = (1, . . . , 1)⊥,4,5 which is independent of the ck.
However, even in the one-dimensional case, as soon as multiscaling functions are considered it is easy to see that the
appropriate necessary and sufficient space W can be considerably smaller than the analogue of the co-dimension 1
space V . Additionally, W can be very difficult to determine explicitly in the multi-function setting, even with the
assumption of linear independence, while V is given explicitly. However, we will show in this paper that, even in the
general multivariate, multi-function case with arbitrary dilation matrix, the infinite matrix products of the analogues
of T0, T1 must actually converge on the bigger space V , and not merely on W . The proof in complete generality can
be found in Cabrelli et. al6 along with sufficient conditions and other results. Here we will try to elucidate the main
ideas of the proof of the necessary conditions without the obscuring technical details.

There are three key ingredients to the proof:

• First, the proof of the necessary conditions by Wang3 for the single-function, univariate case.

• Second, the theory of tilings of Rn by arbitrary tiles.

• Third, the application of self-similarity to this setting.

2. NOTATION, ATTRACTORS, AND TILINGS

We will assume throughout this paper that A is a fixed dilation matrix and that Zn is its associated full-rank invariant
lattice. That is, A(Zn) ⊂ Zn and every eigenvalue λ of A satisfies |λ| > 1. For clarity, we will only consider here the
lattice Zn, but the results all carry over without loss of generality to any full-rank lattice Γ.6
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2.1. The Refinement Equation and the Refinement Operator

We will consider refinement equations of multiplicity r of the form

f(x) =
∑
k∈Λ

ck f(Ax − k), x ∈ R
n, (1)

where Λ is a fixed finite subset of Zn and the ck are fixed r × r matrices. We let ck = 0 for k /∈ Λ. A solution of the
refinement equation is a vector-valued function f = (f1, . . . , fr)t : Rn → C

r and is called a vector scaling function or
a refinable vector function.

The refinement operator associated with this refinement equation is the mapping S acting on vector functions
g : Rn → C

r defined by
Sg(x) =

∑
k∈Λ

ck g(Ax − k), x ∈ R
n.

A vector scaling function is thus a fixed point of S. The cascade algorithm is the iteration

f (i+1) = Sf (i).

Our main interest in this paper is in compactly supported solutions of the refinement equation, especially ones which
satisfy the “minimal accuracy” condition defined in Section 2.8. We therefore note the following mild normalization
condition on the coefficients ck which ensures that a compactly supported solution to the refinement equation will
exist, at least in the sense of distributions.7

Proposition 2.1. If the r × r matrix ∆ = 1
m

∑
k∈Λ ck has eigenvalues λ1 = · · · = λs = 1 and |λs+1|, . . . , |λr| < 1

with the eigenvalue 1 nondegenerate, then there exist compactly supported distributions f1, . . . , fr such that f =
(f1, . . . , fr)t satisfies the refinement equation (1) in the sense of distributions. Furthermore, f̂(ω) is a continuous
vector function, and f̂(0) 6= 0.

2.2. Attractors

Since we require that A(Zn) ⊂ Zn, the dilation matrix A necessarily has integer determinant. We define

m = | det(A)|

and let
D = {d1, . . . , dm}

be a full set of digits with respect to A and Z
n, i.e., a complete set of representatives of the order-m group Z

n/A(Zn).
Without loss of generality, we impose the condition that 0 ∈ D, i.e., the zero vector is one of the digits. Because D
is a full set of digits, the lattice Zn is partitioned into the disjoint cosets

Z
n
d = A(Zn) − d = {Ak − d : k ∈ Z

n}, d ∈ D. (2)

The space H(Rn) consisting of all nonempty, compact subsets of Rn is a complete metric space under the Hausdorff
metric h(·, ·) defined by

h(B, C) = inf{ε > 0 : B ⊂ Cε and C ⊂ Bε},
where

Bε = {x ∈ R
n : dist(x, B) < ε}. (3)

That is,
h(B, C) < ε ⇐⇒ B ⊂ Cε and C ⊂ Bε.

Since all norms on R
n are equivalent, the definition of the Hausdorff metric is independent of the choice of norm

on Rn.
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For each k ∈ Zn, let wk : Rn → Rn be the affine map

wk(x) = A−1(x + k).

Since A−1 is contractive, each wk is a contractive mapping on Rn. For each finite subset H ⊂ Zn, define wH : H(Rn) →
H(Rn) by

wH(B) =
⋃

k∈H

wk(B) = A−1(B + H). (4)

Using the fact that each wk is contractive on Rn under the Euclidean norm, it can be shown that wH is contractive on
H(Rn) under the Hausdorff metric. The Contraction Mapping Theorem therefore implies that there exists a unique
nonempty compact set KH ⊂ Rn such that

wH(KH) = KH .

That is, KH is defined by the property
KH = A−1(KH + H). (5)

The set KH is called the attractor of the iterated function system (IFS) generated by {wk}k∈H .8 We can use equation
(5) to obtain another expression for KH . Iterating equation (5) k times, we see that KH =

∑k
j=1 A−j(H)+A−k(KH).

Then, using the fact that A−1 is a contraction, it can be shown that

KH =
∞∑

j=1

A−j(H) =
{ ∞∑

j=1

A−jhj : hj ∈ H

}
. (6)

The attractors KΛ and Q = KD of the IFS’s generated by {wk}k∈Λ and {wk}k∈D, respectively, will play partic-
ularly important roles in this paper.

Recall that Λ is the subset of Z
n for which the coefficients ck of the refinement equation (1) are nonzero. If we

define the support of a vector-valued function g = (g1, . . . , gr)t : Rn → C
r to be the closure of {x ∈ Rn : g(x) 6= 0},

then it follows from basic properties of attractors that a vector scaling function must be supported within KΛ.
Therefore, the support of the scaling function does not depend on the values of the coefficients ck but rather on their
placements.

2.3. Tiles

With D = {d1, . . . , dm} a full set of digits with respect to A and Zn, the attractor Q = KD satisfies the following
important properties.9,10 Here Q◦ denotes the interior of Q, and |Q| is the Lebesgue measure of Q.

Lemma 2.1. The following statements hold.

(a) Q + Zn = Rn.

(b) Q has nonempty interior, Q is the closure of Q◦, and |∂Q| = 0.

(c) |Q∩(Q+k)| = 0 for all k ∈ Zn \{0} if and only if |Q| = 1. In this case, Q∩(Q+k) ⊂ ∂Q for each k ∈ Zn\{0}.

In other words, part (c) above says that if |Q| = 1, then Q is a tile in the sense that the Zn-translates {Q+k}k∈Zn

cover Rn with overlaps of measure zero. It is not always true that for each dilation matrix A there exists a full set
of digits D such that the corresponding attractor Q is a tile in this sense.11,12 However, Lagarias and Wang have
shown that this is the case if n = 1, 2, 3 or if m = | det(A)| > n.13–15 For n = 4 a counterexample exists.11

We will assume throughout this paper that whenever a dilation matrix A and choice of digits D are given, the
corresponding attractor Q = KD is in fact a tile. That is, we always implicitly assume that the Z

n-translates of Q
cover Rn with overlaps of measure zero.

Example. A tile Q may have a fractal boundary. For example, for the dilation matrix A =
[

1 −1
1 1

]
and digit

set D = {(0, 0), (1, 0)}, the tile Q is the celebrated “twin dragon” fractal shown in Figure 1.
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Figure 1. Twin Dragon attractor

For the attractor Q, by equation (6) we have

Q = KD =
∞∑

j=1

A−j(D) =
{ ∞∑

j=1

A−jξj : ξj ∈ D

}
.

Thus, each point x ∈ Q can be written x =
∑∞

j=1 A−jξj for some ξj ∈ D. We write x = .ξ1ξ2 · · · in this case, and
refer to this representation of x as an A-nary expansion of x. Note that A-nary expansions need not be unique.

We will define a function τ : Q → Q that is analogous to the univariate 2x mod 1 map. Recall that, by definition,
Q =

⋃m
i=1 wdi(Q). If x ∈ Q is such that x ∈ wdi(Q) for a unique digit di, then we set

τx = w−1
di

(x) = Ax − di. (7)

Thus, if x = .ξ1ξ2 · · · is an A-nary expansion of such an x, then ξ1 = di and τx = .ξ2ξ3 · · · . For other x, the meaning
of equation (7) is ambiguous. We eliminate this ambiguity by “disjointizing” the sets wdi(Q). Specifically, we define

Q1 = wd1(Q) and Qi = wdi(Q) \
( ⋃

j<i

Qj

)
for i = 2, . . . , m. (8)

Then Qi ⊂ wdi(Q), and Q is the union of the disjoint sets Q1, . . . , Qm. Hence each x ∈ Q lies in a unique Qi, and
we define τx by equation (7) using that unique value of i.

The tile Q has the property that it covers Rn by lattice translates with overlaps of measure zero. However, for
some proofs we need a subset Q̃ of Q which covers Rn by lattice translates without overlaps. For example, if n = 1
and the tile Q was the interval [0, 1], then we could simply remove one endpoint to obtain a new set Q̃ = [0, 1) which
tiles R without overlaps. In general, however, the attractor Q may have a fractal boundary, and it is not obvious that
an analogous “peeling off” process is always possible. In particular, in the higher-dimensional case the Hausdorff
dimension of the boundary is often strictly larger than n − 1!

To overcome this problem, we divide the lattice Z
n into three disjoint subsets Zn

+, Zn−, and {0} in such a way
that Zn

− = −Zn
+ and both Zn

+ and Zn
− are closed under vector addition. Specifically, we set

Z
n
+ =

n⋃
i=1

{k ∈ Z
n : k = (k1, . . . , ki, 0, . . . , 0), ki > 0}

and then define Zn− = −Zn
+. Then we have the following result.6

Proposition 2.2. Assume that Q is a tile, and define

Q̃ = Q \ ⋃
k∈Z

n
+

(Q + k).

Then the Zn-translates of Q̃ cover Rn without overlaps, i.e., Q̃ + Zn = Rn and Q̃ ∩ (Q̃ + k) = ∅ for k ∈ Zn \ {0}.
Further, Q̃ ∩ Zn contains a single element.
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2.4. Generalized Matrix Notation

It will be convenient to use a generalized matrix notation which allows matrices or vectors to be indexed by arbitrary
countable sets. If desired, such generalized matrices can always be realized as ordinary matrices by choosing a
specific ordering for the index set. The actual ordering used is not important, as long as the same ordering is used
consistently. To be precise, let J and K be finite or countable index sets. Let mj,k be r × s matrices for j ∈ J
and k ∈ K. Then we say that M = [mj,k]j∈J,k∈K ∈ (Cr×s)J×K is a J × K matrix (with r × s block entries). If
N = [nk,`]k∈K,`∈L ∈ (Cs×t)K×L, then the product of the J × K matrix M with the K × L matrix N is the J × L
matrix formally defined by

MN =
[∑

k∈K

mj,k nk,`

]
j∈J,`∈L

.

Most summations encountered in this paper will contain only finitely many nonzero terms. A “column vector” is a
J × 1 matrix, which we will denote by v = [vj ]j∈J . The entries vj may be scalars or r × s blocks. In particular, C

r

is the space of column vectors of length r. Analogously, a “row vector” is a 1 × J matrix, which we will denote by
u = (uj)j∈J . In particular, C

1×r is the space of all row vectors of length r.

2.5. Admissibility

Recall that any compactly supported solution f to the refinement equation must be supported within the attractor
KΛ, which is a compact set in R

n. Since Q is a tile, a finite number of lattice translates of Q will cover KΛ. Let
Ω ⊂ Zn denote any fixed set such that

KΛ ⊂ Q + Ω.

If the boundary of the tile Q is fractal-like, it may be difficult to construct such a set Ω. Algorithms for constructing
such an Ω exist, although they do not necessarily produce the smallest possible such Ω.6 For some results, no
assumptions on Ω other than KΛ ⊂ Q + Ω are required. However, the proof of the necessary conditions presented in
this paper will require the following additional “admissibility” requirement on Ω.

Definition. Let H be a finite subset of Zn. Then we say that a nonempty, finite set Ω ⊂ Zn is H-admissible if

wH(Ω) ∩ Z
n ⊂ Ω,

where wH(Ω) = A−1(Ω + H) is as defined in equation (4).

The notion of admissibility arises naturally in the study of refinement equations.16 For example, if Ω is Λ-
admissible then the space

`(Ω) = {a = [ak]k∈Zn ∈ (Cr×1)Z
n×1 : supp(a) ⊂ Ω}

is right-invariant under the infinite matrix L = [cAi−j ]i,j∈Zn , and the right-eigenvectors of L corresponding to nonzero
eigenvalues are necessarily elements of `(Ω). The eigenvalues and eigenvectors of L are intimately tied to the accuracy
of the vector scaling function, a topic which is explored in more detail in Cabrelli et. al.7

We will need to consider sets Ω ⊂ Zn which are admissible with respect to the set

Λ − D = {k − d : k ∈ Λ, d ∈ D}.

Since we have assumed that 0 ∈ D, it follows that Λ ⊂ Λ − D. For example, the set ΩΛ−D = KΛ−D ∩ Zn is both
Λ-admissible and (Λ − D)-admissible. By Lemma 4.8 in Cabrelli et al.,7 every finite subset of Zn is contained in a
(Λ − D)-admissible set.

2.6. Matrix Form of the Refinement Operator

We will obtain a matrix form of the refinement operator in this section.

Consider any function g : Rn → C
r such that supp(g) ⊂ KΛ. Define the folding of g to be the function Φg : Q →

(Cr×1)Ω×1 given by
Φg(x) =

[
g(x + k)

]
k∈Ω

, x ∈ Q.
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If we write (Φg)k(x) = g(x+k) for the kth component of Φg(x), then this folding has the property that (Φg)k1(x1) =
(Φg)k2(x2) whenever x1, x2 ∈ Q and k1, k2 ∈ Ω are such that x1 + k1 = x2 + k2 (because Q is a tile, any such points
x1, x2 would have to lie on ∂Q).

For each d ∈ D, define an Ω × Ω matrix Td by

Td =
[
cAj−k+d

]
j,k∈Ω

.

Let Q1, . . . , Qm be defined as in equation (8). Define an operator T acting on vector functions

u(x) = [uk(x)]k∈Ω : Q → (Cr×1)Ω×1

by

Tu(x) =
m∑

i=1

χ
Qi(x) · Tdiu(Ax − di).

Or, equivalently, T can be defined by
Tu(x) = Tdiu(τx) if x ∈ Qi.

This operator T is related to the refinement operator S as follows.6

Proposition 2.3. Let Ω ⊂ Z
n be such that KΛ ⊂ Q + Ω. Assume that g : R

n → C
r satisfies

supp(g) ⊂ KΛ and g(x) = 0 for x ∈ ∂KΛ.

Let x ∈ Q. Then for each d ∈ D such that Ax − d ∈ Q, we have

ΦSg(x) = TdΦg(Ax − d).

Consequently,
ΦSg = TΦg. (9)

One point to be made about the proof of Proposition 2.3 is the following. Since KΛ ⊂ Q + Ω, if y ∈ KΛ then
y = x+k for some x ∈ Q and k ∈ Ω, but in general this x and k need not be unique. However, if y lies in the interior
K◦

Λ of KΛ, then it can be shown that x and k are unique.

The equality in equation (9) is a pointwise everywhere equality. This is critical for later application of this result
to the existence of continuous solutions of the refinement equation. If instead we we interested in, say, existence of
Lp solutions then we would require only a conclusion of equality almost everywhere. In this case, the hypothesis in
Proposition 2.3 that g(x) vanish on the boundary of KΛ would not be needed, because that boundary must have
measure zero.

2.7. The Joint Spectral Radius

The spectral radius of a square matrix M is

ρ(M) = lim
`→∞

‖M `‖1/` = max{|λ| : λ is an eigenvalue of M}.

This value is independent of the choice of norm ‖ · ‖. For each 1 ≤ p ≤ ∞, the p-joint spectral radius (p-JSR) of a
finite collection of s × s matrices M = {M1, . . . , Mm} is

ρ̂p(M) =




lim
`→∞

( ∑
Π∈P`

‖Π‖p

)1/p`

, 1 ≤ p < ∞,

lim
`→∞

max
Π∈P`

‖Π‖1/`, p = ∞,

(10)
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where
P0 = {I} and P` = {Mj1 · · ·Mj`

: 1 ≤ ji ≤ m}.
It is easy to see that the limit in equation (10) exists and is independent of the choice of norm ‖ · ‖ on C

s×s. Note
that if p ≥ q, then ρ̂p(M) ≤ ρ̂q(M).

The ∞-JSR was introduced by Rota and Strang17 and independently rediscovered by Daubechies and La-
garias,18–20 who also were the first to apply the JSR to the study of refinement equations. The 1-JSR was introduced
by Wang21 and the p-JSR was independently introduced by Jia.22

We will be concerned here only with the ∞-JSR, which we will refer to as the uniform joint spectral radius
or simply as the joint spectral radius. Berger and Wang23 proved that ρ̂∞(M) < 1 if and only if every product
Mj1 · · ·Mj`

converges to the zero matrix as ` → ∞, and that

ρ̂∞(M) = lim
`→∞

max
Π∈P`

ρ(Π)1/`.

While this equality is trivial for the case that M contains a single matrix, it is not at all trivial when m ≥ 2.

2.8. Minimal Accuracy Conditions

To complete the setup for our main result, we need to recall what it means for a scaling function to satisfy the
minimal accuracy conditions. The accuracy of a refinable vector function f is the largest integer κ > 0 such that
every multivariate polynomial q(x) = q(x1, . . . , xn) with deg(q) < κ can be written

q(x) =
∑

k∈Zn

akf(x + k) =
∑

k∈Zn

r∑
i=1

ak,ifi(x + k) a.e., x ∈ R
n,

for some row vectors ak = (ak,1, . . . , ak,r) ∈ C
1×r. If no polynomials are reproducible from translates of f then we

set κ = 0. We say that translates of f along Z
n are linearly independent if

∑
k∈Zn akf(x + k) = 0 implies ak = 0 for

each k.

Conditions for accuracy are easy to formulate in the one-dimensional, single function case (r = 1, n = 1). As long
as we only consider the conditions that imply reproduction of the constant polynomial alone, it is not too difficult
to generalize these conditions to the case of higher dimensions or multiple functions. These can be summarized as
follows.24 The conditions for higher-order accuracy are more involved.24

Lemma 2.2. Let f be a compactly supported distributional solution of the refinement equation. Let Zn
d = A(Zn) − d

denote the cosets defined in equation (2).

(a) If there exists a row vector u0 ∈ C1×r such that u0f̂(0) 6= 0 and

u0 =
∑

k∈Z
n
d

u0ck for each d ∈ D, (11)

then f has accuracy κ ≥ 1, and ∑
k∈Zn

u0f(x + k) = 1 a.e.

(b) If f has accuracy κ ≥ 1 and if f has independent translates, then there exists a row vector u0 ∈ C1×r such that
u0f̂(0) 6= 0 and equation (11) holds.

Suppose now that f is a compactly supported vector scaling function with accuracy κ ≥ 1, and let u0 be the
row vector such that

∑
k∈Zn u0f(x + k) = 1 a.e. If x ∈ Q, then Lemma 4.11 in Cabrelli et al.6 implies that the only

nonzero terms in this series occur when k ∈ Ω. Hence, if we set e0 = (u0)k∈Ω, i.e., e0 is the row vector in (C1×r)1×Ω

obtained by repeating the block u0 once for each k ∈ Ω, then

e0Φf(x) =
∑
k∈Ω

u0f(x + k) =
∑

k∈Zn

u0f(x + k) = 1 a.e., x ∈ Q.
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Thus the values of Φf(x) are constrained to lie in a particular hyperplane E0 in (Cr×1)Ω×1, namely, the collection
of vectors v = [vk]k∈Ω such that e0v =

∑
k∈Ω u0vk = 1. Further, the set of differences V0 = E0 − E0 is the subspace

consisting of vectors v = [vk]k∈Ω such that e0v =
∑

k∈Ω u0vk = 0. If we define the dot product of two column vectors
u = [uk]k∈Ω and v = [vk]k∈Ω ∈ (Cr×1)Ω×1 by

u · v = u∗v =
∑
k∈Ω

u∗
kvk =

∑
k∈Ω

r∑
i=1

ūk,ivk,i,

where u∗ is the Hermitian, or conjugate transpose, of u, then e0v = e∗0 ·v, so V0 is simply the orthogonal complement
of the single column vector e∗0. This space V0 can be shown to be right-invariant under each matrix Td for d ∈ D.

3. MAIN RESULT

It has been shown6 that if the coefficients ck of the refinement equation satisfy the conditions for minimal accuracy,
then a sufficient condition for the existence of a continuous vector scaling function is that ρ̂({Td|V0}d∈D) < 1. Here,
the matrices Td = [cAi−j+d]i,j∈Ω and the subspace V0 = (e∗0)

⊥ depend implicitly on the choice of Ω ⊂ Zn, but there
are no restrictions on Ω except that it be a finite subset of Z

n such that KΛ ⊂ Q + Ω.

In this section we will show that if the minimal accuracy conditions are satisfied and if in addition the lattice
translates of f are “stable” and the set Ω is “admissible,” then the condition ρ̂({Td|V0}d∈D) < 1 is also necessary
for the existence of a continuous vector scaling function. Note that V0 is a very “large” space; specifically, it has
co-dimension 1. Moreover, it is easily determined: the row vector e0 is obtained simply by repeating the row vector
u0 once for each k ∈ Ω, and u0 itself is by equation (11) simply the common left 1-eigenvector of the matrices∑

k∈Z
n
d

ck for d ∈ D.

The definition of “stable translates” that we shall use is as follows.

Definition. A bounded vector function g : R
n → C

r is said to have L∞-stable translates if there exist constants
C1, C2 > 0 such that

C1 sup
k∈Zn

max
1≤i≤r

|ak,i| ≤
∥∥∥∥

∑
k∈Zn

ak g(x + k)
∥∥∥∥

L∞
≤ C2 sup

k∈Zn

max
1≤i≤r

|ak,i|

for all finitely supported sequences of row vectors {ak}k∈Zn , where ak = (ak,1, . . . , ak,r) ∈ C1×r for k ∈ Zn. Equiva-
lently, using the fact that all norms on a finite-dimensional vector space are equivalent, if ‖ · ‖ is any norm on C

r×r,
then a vector function g ∈ L∞(Rn, Cr) has L∞-stable translates if and only if there exist constants C1, C2 > 0 such
that

C1 sup
k∈Zn

‖Bk‖ ≤
∥∥∥∥

∑
k∈Zn

Bk g(x + k)
∥∥∥∥

L∞
≤ C2 sup

k∈Zn

‖Bk‖

for all finitely supported sequences of matrices {Bk}k∈Zn , where Bk ∈ Cr×r for k ∈ Z
n.

Using the above notation, we can now formulate our major result as follows.6

Theorem 3.1. Let f be a continuous, compactly supported solution to the refinement equation (1) such that f has
L∞-stable translates. Assume that there exists a row vector u0 ∈ C1×r such that

u0f̂(0) 6= 0 and u0 =
∑

k∈Z
n
d

u0ck for d ∈ D.

If Ω ⊂ Zn is any (Λ − D)-admissible set such that KΛ ⊂ Q + Ω, then ρ̂({Td|V0}d∈D) < 1.

The proof of Theorem 3.1 consists of two separate steps. First, one shows that the existence of a continuous
solution to the refinement equation with stable translates implies that a matrix-valued version of the cascade algorithm
converges pointwise everywhere when a specific starting function is used. Second, one shows that the convergence of
this version of the cascade algorithm necessarily implies that the JSR in question is less than 1. Each of these stages
is of interest in itself. Moreover, the first stage requires the assumption of stable translates but does not require any
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admissibility assumptions on the set Ω, while the second stage requires that the set Ω be (Λ−D)-admissible but does
not require that f have stable translates. In particular, using the second stage of the proof one can conclude that
whenever the cascade algorithm converges pointwise uniformly for a specific function, then the JSR of the matrices
Td restricted to V0 is strictly less than 1.

The matrix version of the cascade algorithm referred to above is defined as follows. Let Q̃ be the subset of Q
constructed in Proposition 2.2. This set Q̃ has the property that the Zn-translates of Q̃ cover Rn without overlaps.
Further, Q̃ contains a unique element γ0 of Z

n, i.e.,

Q̃ ∩ Z
n = {γ0}.

Let ϕ(0) be the characteristic function of the unique translate of Q̃ that contains the origin times the r × r identity
matrix Ir, i.e.,

ϕ(0)(x) = χ
Q̃−γ0

(x) · Ir, (12)

and let ϕ(i) : Rn → C
r×r be obtained by iterating the refinement operator S on ϕ(0), i.e.,

ϕ(i+1)(x) = Sϕ(i)(x) =
∑
k∈Λ

ck ϕ(i)(Ax − k). (13)

Note that we have abused notation in equation (13) since the refinement operator S is formally defined to act on
vector-valued functions, while we are here applying it to matrix-valued functions. However, the abuse is slight and
the intended meaning is clear. We will perform similar abuses throughout this section without further comment.

Suppose now that the minimal accuracy conditions are satisfied, i.e., there exists a row vector u0 ∈ C1×r such
that

∑
k∈Zn u0f(x+k) = 1. The first stage of the proof of Theorem 3.1 is to show that if the translates of f are L∞-

stable, then the functions ϕ(i) obtained via the matrix cascade algorithm converge everywhere to the matrix-valued
function f(x)u0 and further that the convergence is uniform (i.e., in L∞-norm). It will be important for the second
stage of the proof of Theorem 3.1 that this convergence is pointwise everywhere, and not merely almost everywhere.
In this first stage of the proof of Theorem 5.20 we do not require any admissibility assumptions on the set Ω. Note
that the matrix-valued function f(x)u0 has rank one for each x.

The first stage of the proof is summarized in the following result.6

Theorem 3.2. Let f be a continuous, compactly supported solution to the refinement equation (1) such that f has
L∞-stable translates. Assume that there exists u0 ∈ C1×r such that u0f̂(0) 6= 0 and u0 =

∑
k∈Z

n
d

u0ck for d ∈ D. Let

ϕ(0) and ϕ(i) be defined by equations (12) and (13). Then ϕ(i) converges everywhere to f(x)u0 as i → ∞ and this
convergence is uniform.

To obtain the pointwise everywhere convergence of the cascade algorithm, the proof of the above result uses in a
crucial way the fact that Q̃ covers Rn by lattice translates without overlaps.6

For the second stage of the proof of Theorem 3.1, we require some auxiliary notation and results. We shall in the
remainder of this section often encounter nested subsets of Zn of the form

Ω ⊂ Ω̃ ⊂ Z
n.

We will use a tilde to denote the analogues for Ω̃ of objects implicitly associated with Ω. For example, since
Td = [cAj−k+d]j,k∈Ω, we define T̃d = [cAj−k+d]j,k∈Ω̃.

The need for these larger sets Ω̃ arises because we will be applying the cascade algorithms to functions that are
compactly supported but which need not be supported within the attractor KΛ. However, as stated in the following
lemma, it is possible to control the supports of the iterates of the cascade algorithm by observing that these supports
must converge in the Hausdorff metric to KΛ. For this purpose, recall the notation introduced in association with
the Hausdorff metric, namely, Bε = {x ∈ Rn : dist(x, B) < ε}.

Lemma 3.3. Let Ω ⊂ Ω̃ ⊂ Γ be such that KΛ ⊂ Q + Ω and Ω̃ is (Λ − D)-admissible. If g is any function
such that supp(g) ⊂ Q + Ω̃, then supp(Sg) ⊂ Q + Ω̃ as well. Further, given ε > 0 there exists i0 > 0 such that
supp(Sig) ⊂ (Q + Ω)ε for all i ≥ i0.
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Now we can complete the second stage of the proof of Theorem 3.1. Specifically, we show next that the pointwise
convergence of the matrix cascade algorithm implies a restriction on the uniform JSR. This result requires an
admissibility assumption on Ω, but does not require that f have L∞-stable translates.6

Theorem 3.4. Let f be a continuous, compactly supported solution to the refinement equation (1). Assume that
there exists u0 ∈ C1×r such that u0f̂(0) 6= 0 and u0 =

∑
k∈Z

n
d

u0ck for d ∈ D. Let Ω be any (Λ−D)-admissible subset

of Z
n such that KΛ ⊂ Q + Ω. If the functions ϕ(i) defined by equations (12) and (13) converge pointwise everywhere

to f(x)u0, then ρ̂({Td|V0}d∈D) < 1.

Omitting details, we will sketch the proof of this theorem. We will first prove that if {ξi}∞i=1 is any sequence of
digits ξi ∈ D, then the matrix product Tξ1 · · ·Tξi converges as i → ∞ to the rank-one matrix each of whose columns
is Φ(f(x)u0), where x is the point

x = .ξ1ξ2 · · · =
∞∑

j=1

A−jξj ∈ Q.

From this fact we will then deduce that ρ̂({Td|V0}d∈D) < 1.

To begin, let a sequence of digits {ξi}∞i=1 be fixed, and set x = .ξ1ξ2 · · · ∈ Q. By hypothesis, ϕ(i)(x) → f(x)u0

when ϕ(0)(x) = χ
Q̃−γ0

(x) · Ir. Given ε > 0 we fix a “large enough” (Λ − D)-admissible set Ω̃ containing Ω; large
enough means that (Q + Ω)ε ⊂ (Q + Ω̃)◦.

Let σh denote the translation operator, i.e., σhg(x) = g(x − h). For each h ∈ Ω̃, set

ϕ
(0)
h (x) =

(
σh+γ0ϕ

(0)
)
(x) = χ

Q̃+h(x) · Ir,

and define
ϕ

(i)
h (x) = Siϕ

(0)
h (x) = Si

(
σh+γ0ϕ

(0)
)
(x) = σA−i(h+γ0)(S

iϕ(0))(x). (14)

Note that supp(ϕ(0)
h ) ⊂ Q + h ⊂ Q + Ω̃ for each h ∈ Ω̃.

Now fix any particular h ∈ Ω and consider the points

yi = .ξi+1ξi+2 · · · ∈ Q.

Recall that Q̃ was defined to have the property that the Z
n-translates of Q̃ cover Rn without overlaps. Therefore, the

point yi + h must lie in some unique translate of Q̃. Hence, there exist unique points qi ∈ Q̃ and ki ∈ Zn such that
yi + h = qi + ki, and by Lemma 4.11 in Cabrelli et al.,6 we have ki ∈ Ω̃. Hence, if we let δh,j denote the Kronecker
delta, then then folding of ϕ

(0)
ki

satisfies

Φ̃ϕ
(0)
ki

(yi) =
[

δh,j · Ir

]
j∈Ω̃

.

Fix any ordering on Ω̃ such that the elements of Ω come first. Then since Ω ⊂ Ω̃ and since Td = [cAj−k+d]j,k∈Ω,
the matrix T̃d = [cAj−k+d]j,k∈Ω̃ has the block form

T̃d =
[

Td Bd

0 Cd

]
(15)

for some matrices Bd, Cd. The fact that the lower-left block of T̃d is zero is a consequence of the fact that ck = 0
when k /∈ Λ. Define

∆h =
[

δh,j · Ir

]
j∈Ω

and ∆̃h =
[

δh,j · Ir

]
j∈Ω̃

=
[

∆h

0

]
.

∆h and ∆̃h are generalized column vectors with the identity block Ir appearing in “row block h” and zeros elsewhere.
Multiplication of a matrix by ∆h or ∆̃h on the right therefore selects out “column block h” from that matrix. Thus,
by Proposition 2.3 we have for i ≥ i0 that

Φ̃ϕ
(i)
ki

(x) = Φ̃Siϕ
(0)
ki

(x) = T̃ξ1 · · · T̃ξiΦ̃ϕ
(0)
ki

(yi) = T̃ξ1 · · · T̃ξi∆̃h, (16)
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which is “column block h” of T̃ξ1 · · · T̃ξi . On the other hand, we have by hypothesis that

Siϕ(0)(x) = ϕ(i)(x) → f(x)u0. (17)

Therefore,

T̃ξ1 · · · T̃ξi∆̃h = Φ̃ϕ
(i)
ki

(x) by (16)

= Φ̃(σA−i(ki+γ0)S
iϕ(0))(x) by (14)

→ Φ̃(f(x)u0), (18)

the conclusion on the preceding line following from equation (17), the contractivity of A−1, and the fact that each
ki lies in the finite set Ω̃. Thus, “column block h” of T̃ξ1 · · · T̃ξi converges to Φ̃(f(x)u0). This is true for each h ∈ Ω,
whereas the column blocks of T̃ξ1 · · · T̃ξi are indexed by the larger set Ω̃. Therefore let us examine the column blocks
corresponding to indices h ∈ Ω in more detail. Since T̃d has the block form given by equation (15), we have

T̃ξ1 · · · T̃ξi∆̃h =
[

Tξ1 · · ·Tξi ∗
0 ∗

] [
∆h

0

]
=

[
Tξ1 · · ·Tξi∆h

0

]
. (19)

Further,

Φ̃(f(x)u0) =
[

Φ(f(x)u0)
∗

]
, (20)

so we conclude by combining equations (18)–(20) that

Tξ1 · · ·Tξi∆h → Φ(f(x)u0). (21)

Since the columns blocks of Tξ1 · · ·Tξi are indexed by Ω, equation (21) implies that each column block of Tξ1 · · ·Tξi

converges to Φ(f(x)u0). Therefore, the product Tξ1 · · ·Tξi converges to to the matrix B(x) consisting of Ω column
blocks each equal to Φ(f(x)u0). That is,

Tξ1 · · ·Tξi → B(x) =
(
Φ(f(x)u0)

)
k∈Ω

.

This matrix B(x) is rank-one because each column block Φ(f(x)u0) consists of rows that are multiples of the 1 × r
row vector u0.

Thus, we have demonstrated that Tξ1 · · ·Tξi converges to a rank-one matrix for each sequence of digits {ξi}∞i=1.
Why is this enough to prove Theorem 3.4? The answer is that the coefficients ck satisfy the conditions for minimal
accuracy. Because of this, it can be seen that there exists an orthonormal basis B for (Cr×1)Ω×1 such that each
matrix Td has in this basis the block form

[Td]B =
[

1 0
∗ Cd

]
,

where 1 is the scalar 1, and Cd = [Td|V0 ]B0 is the matrix for Td restricted to V0 with respect to an orthonormal basis
B0 for V0. Consequently, working in this basis, we have for each i that

[Tξ1 · · ·Tξi ]B =
[

1 0
∗ Cξ1 · · ·Cξi

]
.

Since Tξ1 · · ·Tξi converges to a rank-one matrix, the product Cξ1 · · ·Cξi must therefore converge to the zero matrix.
This implies by Theorem I of Berger and Wang23 that ρ̂({Cd}d∈D) < 1, and completes the proof.

Finally, the proof of Theorem 3.1 follows by combining Theorems 3.2 and 3.4.
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