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The Application of Multiwavelet
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Abstract— Multiwavelets are a new addition to the body situation when there isore than onescaling function [16].
of wavelet theory. Realizable as matrix-valued filterbanks This leads to the notion ahultiwaveletswhich have several

leading to wavelet bases, multiwavelets offer simultaneous 44y antages in comparison to scalar wavelets [36]. Such fea-
orthogonality, symmetry, and short support, which is not

possible with scalar two-channel wavelet systems. After tures as short support, orthogonality, symmetry, and vanishing

reviewing this recently developed theory, we examine the Moments are known to be important in signal p_roceSSing-
use of multiwavelets in a filterbank setting for discrete-time A scalar waveletcannot possess all these properties at the

signal and image processing. Multivavelets differ from scalar same time [35]. On the other hand, a multiwavelet systam
wavelet systems in requiring two or more input streams to the - gimltaneously provide perfect reconstruction while preserving

multiwvavelet filterbank. We describe two methods (repeated | th th lit d f t the b dari
row and approximation/deapproximation) for obtaining ength (orthogonality), good performance at the boundaries

such a vector input stream from a one-dimensional (1-D) (via linear-phase symmetry), and a high order of approxi-
signal. Algorithms for symmetric extension of signals at mation (vanishing moments). Thus, multiwavelets offer the
boundaries are then developed, and naturally integrated with possibility of superior performance for image processing ap-
approximation-based preprocessing. We describe an additional plications, compared with scalar wavelets.

algorithm for multiwavelet processing of two-dimensional (2-D) We d ibe h | techni f ltirat . |
signals, two rows at a time, and develop a new family of € GesCribe Nere Novel techniques Siormuitirate “signa

multiwavelets (the constrained pairs) that is well-suited to this Processing implementations of multiwvavelets, and present ex-
approach. This suite of novel techniques is then applied to perimental results for the application of multiwavelets to
two basic signal processing problems, denoising via wavelet-signal denoising and image compression. The paper is or-
shrinkage, and data compression. After developing the approach yanized as follows. Section Il reviews the definition and

via model problems in one dimension, we apply multivavelet . . . .

processing to images, frequently obtaining performance superior cons_trucuon of (_:ontlnuous—tlme multlwavelet syste_ms, and
to the comparable scalar wavelet transform. Section lll describes the connection between multiwavelets
and matrix-valued multirate filterbanks. In Section 1V, we de-
velop several techniques for applying multiwavelet filter banks
to one-dimensional (1-D) signals, including approximation-
based preprocessing and symmetric extension for finite-length
signals. Two-dimensional (2-D) signal processing offers a new
set of problems and possibilities for the use of multiwavelets;
we discuss several methods for the 2-D setting in Section V,
AVELETS are a useful tool for signal processingncluding a new family of multiwavelets, the constrained pairs.
applications such as image compression and denoisipghally, in Section VI we describe the results of our application

Until recently, only scalar wavelets were known: waveletsof multiwavelets to signal denoising and data compression.
generated byone scaling function. But one can imagine a

Index Terms—Denoising, filterbanks, image coding, multi-
wavelets, wavelets.

I. INTRODUCTION

Il. MULTIWAVELETS—SEVERAL WAVELETS
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Fig. 1. Geronimo—Hardin—Massopust pair of scaling functions.

3 3
2 2
1 1

0 T\
0.2‘5\0./5'0.73\1/6.25‘1\5/1’.75 2 0.250.5Y.75 1.25W75 2
-1 -1

Fig. 2. Geronimo—Hardin—Massopust multiwvavelets.

» There is one wavelat(t). Its translatesv(¢t — k) produce wavelet equations for this system have four coefficients:
a basis of the “detail” subspad&, to give V;:
‘P(t) —_ |:¢l(t):|

$2(t)
— C0j®
+OP2

Vi=Vod W

~—~~

2t) + C[1]®(2t — 1)
(2t — 2) + C[3]®(2t — 3),

—_

For multiwavelets, the notion of MRA is the same except that

now a basis forVy, is generated by translates &f scaling g 4\{5 g 0
functions ¢, (t — k), ¢2(t — k), -+, ¢n(t — k). The vector C[0] = ‘1’ "3 , C[l] = ; ,
O(t) = [p(t), -+, pn(H)]F, will satisfy a matrix dilation -— = —
equation (analogous to the scalar case) - 10v2 10 10v2
[0 0 0 0
CRl=| 9 3, cpl=| 1 SNE)
= - — = -——— 0
o(t) j%: Clk]®(2t — k). @ 0z 10 02
_ {wl(t)}
The coefficienta”[k] are N by N matrices instead of scalars. ws(t)
Associated with these scaling functions ake wavelets = D[0]®(2t) + D[1]®(2t — 1)
wi(t), -- -, wn(t), satisfying thematrix wavelet equation + D[2]®(2¢ — 2) + D[3]@(2t — 3)
—- 1 - —- 9
— - -——= -3 — 10
W (t) %:DMM% k). (2) MW:%} V2 7 szﬁjvg 7
1 3v2] -9 0

Again, W(t) = [wi(t), - --, wn(t)]* is a vector and thé®[k] 1 9

are N by N matrices. DpRl=—|V2 , DBl=—| V2 . @
As in the scalar case, one can find the conditions of L9 —3vV2] | -1 0

orthogonality and approximation for multiwavelets [20], [29],

[36], [37]; this is discussed below. There are four remarkable properties of the Geron-
A very important multiwavelet system was constructed biyno—Hardin—-Massopust scaling functions, as follows.

Geronimo, Hardin, and Massopust [16] (see [1] for another. They each have short support (the intervlls1] and

early multiwvavelet construction). Their system contains the [0, 2]).

two scaling functionsg(t), ¢2(t) shown in Fig. 1 and the « Both scaling functions are symmetric, and the wavelets

two waveletsu (t), w2 (¢) shown in Fig. 2. The dilation and form a symmetric/antisymmetric pair.
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Fig. 3. Symmetric pair of orthogonal scaling functions.
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Fig. 4. Chui-Lian symmetric/antisymmetric orthogonal scaling functions.

« All integer translates of the scaling functions are orthodhe reflection of the other about its center point. Moreover, the

onal. Chui—Lian symmetric/antisymmetric scaling functions are the
* The system has second order of approximation (localbum and difference of the two functions from the symmetric
constant and locally linear functions are ¥p). pair. In this article we will make use of several other non-

Let us stress that a scalar system with one scaling functisyynmetric multivavelets with desirable properties. More on
cannot combine symmetry, orthogonality, and second order &pe construction of multiscaling functions and multiwavelets
proximation. Moreover, a solution of a scalar dilation equatig#an be found in [1], [9], [13], [18], [22], [24], [30], [31], [38],
with four coefficients is supported on the interyaJ 3]! [39], and [41].

Other useful orthogonal multiwavelet systems with second-
order approximation are theymmetric pairdetermined by

three coefficients I1l. M ULTIWAVELETS AND MULTIRATE FILTERBANKS

247 3 1 Corresponding to each multiwavelet system is a matrix-

0 4 41 4 valued multirate filterbank [15], or multifilter. A multiwavelet
clo] = 27 |’ Cl] = 1 31’ filterbank [36] has “taps” that aré&V x N matrices (in this

10 1 - 1 1 paper, we will be working withv = 2). Our principal exam-

ple is the four-coefficient symmetric multiwavelet filterbank

r2 -7 0_ whose lowpass filter was reported in [16]. This filter is given
C2) = 4 by the four 2x 2 matricesC[k] of (3). Unlike a scalar two-

247 0 band paraunitary filterbank, the corresponding highpass filter

L7y . [specified by the four 2« 2 matricesD[k] of (4)] cannot be

and the Chui-Lian pair [6] determined by the coefficients Obtained simply as an “alternating flip” of the lowpass filter;
the wavelet filtersD[k] must be designed [36]. The resulting

-1 1
5 ) 2 0 two-channel, 2x 2 matrix filterbank operates otwo input
Clo] = VAL Cll] = [0 1}, data streams, filtering them infour output streams, each of
which is downsampled by a factor of two. This is shown in
-4 4 Fig. 5. Each row of the multifilter is a combination of two
= 1 ordinary filters, one operating on the first data stream and the
C[2] = 2 2 ) (5) other operating on the second. For example, the first lowpass
_ﬁ _ﬁ multiwavelet filter given in (3) operates ag, o[k] on the first
L 4 4 input stream and, 1[k] on the second. It is a combination of

Corresponding scaling functions are shown in Figs. 3 and the Haar filter{1, 1} on the first stream and the unit impulse
Observe that for the symmetric pair one scaling function iesponse on the second stream.
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Fig. 6. Multiwavelet filterbank with “repeated row” inputs.

Fig. 5. A multiwavelet filterbank, iterated once.

i - . combinations of integer translates of the scaling functigns
We ask that the matrix filter coefficients satisfy the orthog; b g g on

onality (“block-paraunitarity”) condition

N—-1
> CIK Ok — 20" = 280,1.
k=0

In the time domain, filtering followed by downsampling is The lowpass filterC' and highpass filterD consist of

described by an infinite lowpass matrix with double shifts: COefficients corresponding to the dilation equation (1) and
wavelet equation (2). But in the multiwavelet setting these

coefficients aren by n matrices, and during the convolution
step they must multiply vectors (instead of scalars). This means
that multifilter banksneed» input rows We will consider
several ways to produce those rows. In this section the signals

Each of the filter tap€’[k] is a 2 x 2 matrix. The eigenvalues are 1-D; in Section V we consider 2-D signal processing.
of the matrixL are critical. The solution to the matrix dilation
equation (1) is a two-element vector of scaling functiona. Oversampled Scheme

(I)(t).: [P1(2), ¢2<_t)]T' The_: span of ir:teger tra}’nslates Of the The most obvious way to get two input rows from a given
multlwavelet_sgalmg_funct|ons Is the Iowpass S_pdéﬁ the_ signal is to repeat the signal. Two identical rows go into the

set of scale-limited signals [17]. Any continuous-time functio, ifitter hank. This procedure, which we call “repeated row,”
f(#) in Vo can be expanded as a linear combination is shown in Fig. 6. It introduces oversampling of the data by a
£(t) = Z U§OL¢1 (t—n)+ v§°L¢2(t —n). factor of two. Ove_rsampled representation_s have proven us_eful

—~ ’ in feature extraction; however, they require more calculation
i i than critically sampled representations. Furthermore, in data
The superscript0) denotes an expansion “at scale Igvel 0.Compression applications, one is seeking to remove redun-
f(t) is completely described by the sequen{:egfi}, {vé,L}- dancy, not increase it. In the case of 1-D signals the “repeated
Given such a pair of sequences, their coarse approximatigy” scheme is convenient to implement, and our experiments
(component inV”_;) is computed with the lowpass part of thegny denoising of 1-D signals were encouraging (see Section VI-
multiwavelet filterbank: A). In two dimensions, the oversampling factor increases to
r 7 four, limiting the usefulness of this scheme to applications
such as denoising which do not require critically sampled or

(6) IV. ONE-DIMENSIONAL SIGNAL PROCESSING
WITH MULTIWAVELET FILTERBANKS

o
o5y

o,
)

near-critically sampled representation of the data.

L0 1 = B. A Critically Sampled Scheme:
l 2_’5’1] l 2(’);“’1] Approximation-Based Preprocessing
U2, nt1 Y2, n+1 A different way to get input rows for the multiwavelet

filterbank is topreprocessthe given scalar signaf[n]. For
data compression, where one is trying to find compact trans-
Because the multifilte€[k] is finite impulse response (FIR),form representations for a dataset, it is imperative to find
each apparently infinite sum in the matrix multiplicatioreritically sampled multiwavelet transform schemes. We de-
is actually finite and well-defined. Analogously, the detailscribe a preprocessing algorithm based on the approximation
ng), wg_j) in W_; are computed with the highpass parproperties of the continuous-time multiwavelets, which yields
D[k]. Thus, the multiwavelet filter bank plays the sama critically sampled signal representation. We develop this
mediating role in multiresolution analysis that a scalar fischeme (suggested to us by J. Geronimo) in the context
ter bank plays for scalar wavelet systems. If the maftix of Geronimo—Hardin—Massopust multiwvavelets; however, it
has eigenvalued, 1/2,---, 1/2P~! and the correspondingworks equally well for the Chui-Lian multiwavelets with
eigenvectors have a special form, then polynomials of degneénor modifications.

less thanp belong to the spacéj [20], [29]. This holds Let the continuous-time functioyi(¢) belong to the scale-
for the Geronimo—Hardin—Massopust multiwavelet filter witlimited subspacel, generated by translates of the GHM
p = 2; linear functions can be exactly represented as linesealing functions. This means thaft) is a linear combination



552 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 8, NO. 4, APRIL 1999

Another advantage of this approximation-based preprocess-
ing method is that it fits naturally with symmetric extension
for multiwavelets (discussed below in Section IV-C). In other
words, if we symmetrically extend a finite length sigrféh]
at its boundaries and implement the approximation formulas
(9), then the two rows,{"),, v5”) from the preprocessor wil

Fig. 7. Approximation-based preprocessing and two steps of filtering fhave the appropriate symmetry.

1-D signals. One also can develop a general approximation-type prepro-
cessing based on the following idea. Suppose again that our
of translates of those functions: given signalf lies in V;. This implies that
5O =3 it —n) + oot — ). (7) F@) = vt —n). (10)
n n, k

Suppose that the input sequende] contains samples of(¢)

: The goal of preprocessing is to find the coefficie@@n from
at half-integers: :

the signal samples.
fi2n] = f(n), fl2n+1]= f(n+1/2). Assume that a multiwvavelet system Hﬁsca_lm_g functlf)ns,
all supported orf0, 1]. Now restrict (10) to this interval:
¢1(¢) vanishes at all integer pointsz(¢) is nonzero only at the

integer 1. Sampling the relation (7) at integers and half-integers f=> Ul(c(,))o(/)k(t)v 0<t<1. (11)
gives k
fl2n] = ¢2(1)U§%_17 fSupp_ose that sar::plg%()_], -+« f[IN—1] are the values of the
© © © unction f(¢) at the points
Fl2n+1] = G2(3/2)05 .y + @1 (1/20l]) + da(1/2)01), L s and
(®) P=oNan U Tan
The coefficients;{”), v5"), can be easily found from (8):  The representation (11) gives a linear system for the
ici O . O i
2@ = P2(1) f12n + 1] — $2(1/2) f[2n + 2] — ¢2(3/2) f[2n] coefficients vy, - -, U_N_1,o- The f0”0V\(’(')r)‘9 N sgr)nples
1,n $2(1) ¢1(1/2) v fIN], -+, f[2N — 1] give the values Of(0/071, T, UNL g
o _ fl2n+2] Repeating this procedure we find all tbk)n. If some of the
Vo n = 7(7)2(1) : scaling functions have support longer than1], we will need
o _ several initial (boundary) values oﬁ)_l, v,(f)_Q, ..+ In the
Taking into account the symmetry ¢%(¢), we finally get 556 of finite length signals, these numbers can be obtained
© _ P2(1)f[2n + 1] — ¢2(1/2)(f[2n + 2] + f[2n]) from _the conditions of per?odization or symmgtric exten_sion
Ui, = P2(D)pr (1/2) ’ (Section IV-C). Other multiwavelet preprocessing techniques
are discussed in [7], [19], [27], [41], and [43]-[46].
© f[27‘L + 2]
o) = I (9)
$2(1)

C. Symmetric Extension of Finite-Length Signals

(01)'he (r(glatmns (9) give a natural way to get two input rows In practice all signals have finite length, so we must devise

U1, s V2, Starting from a given signafi[n]. To synthesize the o niques for filtering such signals at their boundaries. There
signal on output we invert (9) and recover (8). This sequengg, o common methods for filtering at the boundary that
of operations is depicted in Fig. 7. preserve critical sampling. The first is circular periodization

In the case of ChU|—L|an_muIt|waveIets, the only d'ﬁerencﬁperiodic wrap) of the data. This method introduces discon-
from the above approach is thai (1) = 1 and¢»(1) = 0, iy ities at the boundaries; however, it can be used with
so that we use }g‘)e samples ﬁ_)fat the({)r)\tegers to determlnealmost any filterbank. The second approach is symmetric
the coefficients:; 7, and then find the,, from the samples gyiension of the data. Symmetric extension preserves signal
of f at the half-integers. _ continuity, but can be implemented only with linear-phase

Given anyf(t) € Vo, the preprocessing step (9) followedsymmetric and/or antisymmetric) filterbanks [3], [4], [23],
by filtering will produce nontr|V|aI.output in the Iowpass[34]_ We now develop symmetric extension for linear-phase
branch only. It yields zero output in the hlg(g)pass subbanghiiwavelet filters, such as the Geronimo—-Hardin—Massopust
For example,f(t) = 1 (locally in Vo) givesv;;, = 1 and and Chui-Lian multifilters. This proves useful for image
vé?zl = /2, which is the eigenvector of the matri&” with compression applications (Section VI).
eigenvalue 1. Recall the basic problem: given an input sigrfgh] with

This preprocessing algorithm also maintains a criticallly samples and a linear-phase (symmetric or antisymmetric)
sampled representation: if the data enters atRatgreprocess- filter, how can we symmetrically extend before filtering
ing yields two streams at rat&/2 for input to the multifiter, and downsampling in a way that preserves the critically
which produces four output streams, each at a fjté. sampled nature of the system? The possibilities for such
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an extension have been enumerated in [4]. Depending page. The placeholder is an arbitrary real number. After
the parity of the input signal (even- or odd-length) anfiltering and downsampling of this extended data, the output
the parity and symmetry of the filter, there is a specifiows will have the same symmetry. In this way we obtain
nonexpansive symmetric extension of both the input signalnonexpansive transform of finite-length input data which
and the subband outputs. For example, an even-length inpahaves well at the boundaries under lossy quantization.
signal passed through an even-length symmetric lowpass filter

should be extended by repeating the first and last samples, iE?.-'ComputationaI Complexity

a half-sample-symmetric signal is matched to a half-sample- briefl h ional d ds of i
symmetric filter. Similarly, when the lowpass filter is of odd We briefly compare the computational demands of mult-

length (whole-sample-symmetry), the input signal should avelet and scalar wavelet filtering. One level of the cascade
extended without repeating the first or last samples. agorithm vyith the G!—iM multifilter does require slightly more
Each row of the GHM multifilter [(3) and (4)] is a Iinearﬂoat'ng point operations than the, scalar wavelet. General

combination of two filters, one for each input stream. One fiIt&on\’()llln_iolrl V\_’ith fourd2 X ng?"?‘trix coeﬁ_iclignts requires
(applied to the first stream) is of even length; the second is %@ mut|p!cat|ons and 14 additions t_o_ yield two outputs.
odd length. Thus we should extend the first stream using hdifoWever, in th(:f.c.ase of tr&ehGl-:_M multgllter, the presence 0;
sample-symmetry (repeating the first and last samples) dRg"Y Zero coeflicients and the linear-phase symmetry may be
extend the second stream using whole-sample-symmetity (epr0|§ed to redyce the computation tq eight mult'lpllcatlon.s
repeating samples). Then, when synthesizing the input sigf d (_e|ght addltlor?s_, for the Iowpa;s f|I_ter and nine multi-
from the subband outputs, we must symmetrize the subb gpations, _11 additions, and two _5'99'“"05 for th_e_ highpass
data differently depending on whether it is going into an eve Iter, requiring a total of 17 multiplications, 19 additions, and
or odd-length filter two sign-flips (38 FLOPS total) for four output values. This
In particular, suppose we are given two input rows (one §nounts to 4.25 multiplications and 9.5 FLOPS per output,
even length, the other of odd length): compared with four multiplications and seven FLOPS per
' output for theD, scalar wavelet filter and 2.5 multiplications

vi% vi?i vi?g e vi%,_l and 5.5 FLOPS for the (3, 5)-tap linear-phase scalar wavelet of
® (O (0 () () LeGall and Tabatabai. These complexity figures do not take
Y20 Y21 Uzttt Uy v Yon into account the approximation/deapproximation processing,
If they are symmetrically extended as if any.

0 0 0 0
ot ol wle o)

©  (© (O (0 (12) V. TwWO-DIMENSIONAL SIGNAL PROCESSING
Y21 Y20 Y21 22 WITH MULTIWAVELET FILTERBANKS
at the start and Multiwavelet filtering of images needs algorithms. One class
v s vl vl of such algorithms is derived simply by taking tensor products
o) o) () (13)  of the 1-D methods described in the previous section. Another
Y2,N-1 V2N VN1 T class of algorithms stems from using the matrix filters of the

at the end to give two symmetric rows, then after one step Biltiwavelet system for fundamentally 2-D processing. We
the cascade algorithm we have the four symmetric subbafigcuss each of these alternatives now.
outputs as in (13a), shown at the bottom of the page. The

application of the (linear-phase) multiwavelet synthesis filtegs. Separable Schemes Based on 1-D Methods

now yiglds the symmetr!c extens_ion of the original signal. Section IV described two different ways to decompose a
Multiwavelet symmetric extension can be done not only fpcgne—dimensional signal using multiwavelets. Each of these

linear-phase filters. For example, the symmetric pair of scallr&%n be turned into a two-dimensional algorithm by taking a

©0) _ E%nsor product, i.e., by performing the 1-D algorithm in each
rows v; 7, andw, 3 as in (13b), shown at the bottom of theyimension separately.

(=1 (=1) (=1) (=1) (=1 (=1

YL Yro Yo 7 Yy x oo Yy Yy
(—1) (—1) (-1) (-1 —-1) (=1)
Va1 V2,0 Va1 Uy n_1 Yy N v, N
' 13a
WD pED D wY wY wY (133)
1,1 1,0 1,1 1, Y1 1L, 1, &1
(—1) (—1) (-1 (-1
—Wy { 0 Wy { wy N 0 W, o1
(0) (0) (0) (0) (0) (0) (0)
V2,1 V2,0 Y0 Y10 Y1,1 "0 Vi N1 @ Uy N

© O (0 )  (0) (0) (0) (130)

Yi,1 Y0 @ Yo V31 Y3 ottt Uy o1 4 VN
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Suppose our 2-D data is represented asvar N matrix of a wavelet decomposition with accuragy (p vanishing
Iy. The first step is to preprocess all the rows and store thments) produces good results while compressing the image
result as a square arrdy such that the first half of each rowrepresentation into very few coefficients [47].
contains coefficients corresponding to the first scaling functionWhen applying multiwavelets to 2-D (image) processing, we
and the second half contains coefficients corresponding to tiee this notion of local approximation as a motivation—we
second scaling function. The next operation is preprocessiwgh to capture locally constant and linear features in the
of the columns of the array; to produce an output matrix lowpass coefficients. Suppose we have a multiwavelet system
I, such that the first half of each column & contains generated by two scaling functiogs(t), ¢=(¢) with accuracy
coefficients corresponding to the first scaling function and the > 1 (this would mean at least one vanishing wavelet
second half of each column corresponds to the second scalmgment in the scalar case). Then constant functifiis = ¢
function. Then the multiwavelet cascade starts—it consists lotally belong to the scale-limited spatg. It has been shown
iterative low- and highpass filtering of the scaling coefficien{f20] that the repeated constant one is an eigenvalue of the
in horizontal and vertical directions. The result after onitering and downsampling operatdr, and there exists a left
cascade step can be realized as the following matrix: eigenvector

LiLy LeLy HiLy Hily (Wn] = [ w1, n, U2, n, UL, nd1s U2, ntls ]
LyLy LyLy H{Ly HyLo

L\H, L,H, H.H, H.H;, with

L,H, LsH, HjH, HyH, [u,]L = [u,].

Here a typical blockH;L, contains lowpass coeﬁ‘icientsI f

X . . L . act,u; , = u1 g andus ,, = us o, SO that
corresponding to the first scaling function in the horizontal ' ' ' '

direction and highpass coefficients corresponding to the second
wavelet in the vertical direction. The next step of the cascade .

will decompose the “low-lowpass” submatrf;: 727 in a [-eta,0 12,00 0, 2,0, -]

similar manner. In the continuous-time subspagg this eigenvector leads to
As noted before, the separable product of 1-D “repeat@sh constant function:

row” algorithms leads to a 4:1 data expansion, restricting

the utility of this approach to applications such as denoising f(t) =c=c Z (U1,n@1(t — 1) + uz, nP2(t — n)).

by thresholding, for which critical sampling is irrelevant. The n

separable product of the approximation-based preprocessingssuming for the moment that our image is locally constant
methods described in Section IV-B yields a critically sampled '

i ; o We input two equal, constant rows of the image (2-D signal)
rcirr)wzzfzg?élr(]m, potentially useful for both denoising and d%e%o the multiwavelet filter bank. The output will be zero in

the highpass and a constant

[' ULy U2, ny UL, n4ly U2, ndl, ]

B. Constrained Multiwavelets [cl }

A different approach to 2-D multiwavelet filtering is to make €2

use of the two-dimensionality of the matrix filter coef“ficient%n the lowpass. If the eigenvectdun,] of L satisfiesu; o =
When processing an image with a scalar filterbank one usuaJLI%/ ' o ¥

. h d col f the | 0, then we will gete; = ¢ and the constant input yields
USes as Input the rows an columns © the image. Foraaconstant lowpass output. However, there is no guarantee
multiwavelet system we need input signals. Where can we

) ) : e of this happy state; for example, in the case of the Geron-
get them? The first solution which comes to mind is Ven¥no—Hardin-Massopust multiwavelet (3)

simple: just usen adjacent rows as the input. For thex22

multiwavelets used here, this would mean taking two rows of [u1 0 wus0] o [1 \/ﬂ

the image at a time, and applying the matrix filter coefficients ' '

to the sequence of two-element vectors in the input streamManq thereforec; # c,. Thus, the lowpass responses of an
However, a naive implementation of this approach doggpitrary multifilter to a constant input adéfferentconstants.

not lead to good results (see Table IV). This is due to th§yantization of these lowpass multifilter outputs (for lossy

intricacies of multiwavelet approximation. Approximation ot:ompression) will then introduce a rippled texture in the

degreep is important for image compression because localjyypass part of the image, creating unacceptable artifacts.

polynomial data can be captured in a few lowpass coefficienigjs is borne out by experiments using the GHM multifilter

A wavelet system (scalar or multiwavelet) satisfies approXisection VI-D below).

mation of degreg (or accuracyp) if polynomials of degree — gimjlar arguments hold for linear approximation [20]: a

less thanp belong to the scale-limited spade. Image data ytiwavelet system has linear approximation (accuracy of
is often locally well-approximated by constant, linear, angrger, = 2) if and only if there are two left eigenvectors.
quadratic functions; thus, such local approximations remaintthe first is

the lowpass spac¥), after filtering and downsampling. This
is one reason why simply retaining the lowpass coefficients [w.] = [ u1,0, 2,0, ¥1,0, U2,0, - |
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0.2 0.2
0.1 0.1 //\
0.5 1 1.5 2 2.5 3 0.5 1 1. 2 25 3
-0.1 -0.1
-0.2 -0.2

Fig. 8. Constrained pair one.

satisfying It is proven in [20] that the vectors = [u1 ¢ u20], ¥ =
)L = [w] [v1,0 w2 0] Must satisfy the following system of equations:
as before. The second eigenvector is uClo]+ O] =u
wC[]+C[3]) =u
[Vn] = [ VUl,n, V2,0, Vi, n+1s V2, n+1, - ] yC[l] + (u+y)C[3] — %y
also satisfying yO[0] + (u+y)C2) =5 (u +y). 17)
[vilL = [va]. We want
For linear approximation we must have Ul 0 = U2 0 = U, (18)
Vi,n =%¥Y1,0 — NUL 0 and
and Y1,0 =¥2,0 = Yo (19)
V2,0 =Y2,0 — U2, 0 i.e., ¥ = (yo/uo)u. From the dilation equation (16) and the

approximation constraints (17), it follows thatis a mutual
eigenvector of all four matrice€'[%]:

uC[k] = du, k=0,1, 2, 3. (20)

for some constantg; o andyz o, so that

[Vn] = [ ccY1,0 — NUL, 0, Y2,0 — NU2, 0,

y1,0 — (n+ Dui o, y2,0 — (0 + L)uz o0, - . . )
) ) ) ~ Consider now a scalar functiop(t)
This second eigenvector leads to linear approximation; indeed 1
P(t) = u—ou‘b(t) = ¢1(t) + ¢a(t).

g(t) =t= Z Ul,nd)l(t - 71) + U?,nd)Q(t - 71)
" According to (16) and (20)¢(t) satisfies the scalar dilation

Again, there is no reason to expect thato = 2 0, and so equation
if we input two equal linear rows into the multifilter, they , , , ,
will most likely emerge as twalifferentlinear rows. Thus, the ¢(t) = cod(2t) + 1 p(2t — 1) + p(2¢ = 2) + c3(2¢ - 3).
locally linear nature of many images will become distortegthe only solution to this equation with orthogonal translates
under such a multiwavelet transform, and this distortion Wiind second order of approximation is Daubechigs’scaling
lead to unacceptablg artifacts under quant!zation. function [10]. Thus, any orthogonal pajip;, ¢»} which has

One way to aVO'Q thl? phenomenon IS to construct gcond order of approximation, satisfies the dilation equation
multiwavelet system in which the eigenvectors have pairwiggs) and the eigenvector constraints (18) and (19) must sum

equal components to Dy
[wn] = -u,0, 1,0, 41,0, -] (14) P1(t) + p2(t) = Du(t).
[Vn] = [ *tYi,0 — NUL, 0, Y1,0 — NUL, 0,

We call such pairgonstrainedmultiscaling functions. There
1,0 — (n+ Luy,0, y1,0 — (n+ Lur o, - ](15)  zre infinitely many constrained orthogonal solutions of (20).

which produce two equal linear outputs as the response to thigts of two of_them are shown in Figs. 8 gnd 9. Ref_er-
equal linear inputs. Such multiwvavelets can be constructéd!c® [25] used ideas 3|m||ar to those underlying constrained
but as we will see, the restrictions (14) and (15) imply sonfBultiwavelets to construct different types of “balanced” mul-
constraints on the properties of the multiscaling functions. tiwavelets.

Consider a multiwavelet system with two scaling functions The implementation of constrained multiwavelets for the

satisfying a matrix dilation equation with four coefficients 2-D wavelet transform is straightforward. In each step of
Mallat’'s algorithm [26], one first processes pairs of rows and

(1) = [‘bl(t)} then pairs of columns. Because locally constant and linear
(1) data are passed through to the lowpass ouputs of a constrained
=C[0]2(2¢) + C[1]2(2t — 1) multifilter, the performance of these constrained multiwavelets

+ C2]9(2t — 2) + C[3]®(2t — 3). (16) in image compression is much better than that ofribecon-
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Fig. 9. Constrained pair two.
strainedGHM pair, when applied by using two adjacent rows TABLE |
as the input. This is confirmed by the experiments reported in DENOISING VIA WAVELET SOFT THRESHOLDING
the next section, as shown in Tables IV and V. GHM with GEM with
Noise | approximation | repeated row | Dy
VI. SIGNAL PROCESSINGAPPLICATIONS OF MULTIWAVELETS mean absolute error | 0.243 0.127 0.123 0.153
foot mean square error | 0.300 0.196 0.177 0.227

In this section, we are going to compare the numericat
performance of GHM and constrained multiwavelets with

_Daube_chlesD4 scalar wavelets. We_ pe_rforr.n t_hese Compaguperior to other smoothing and denoising algorithms. Heuris-
Isons In two standard wavelet_ applications: signal deF‘O'S.”HEauy, wavelet shrinkage has the advantage of not adding
?ndldgta' cor?preﬁsmn. Wedﬂrr?t develop tf;gse appll'cat'o‘%mps” or false oscillations in the process of removing noise,
or - hS|gna Sl; then ex;tre]:n ;em tto Image: /t]_wave €S hecause of the local and smoothness-preserving nature of the
were chosen because they have two vanishing MOomeniz, e et transform. Wavelet shrinkage has been successfully

are o_rthogonal, | alr_1|((1 hr? Vg:')\;l” c(;)efflment_s 'S th_e d;lano plied to SAR imagery as a method for clutter removal [28].
equation—exactly like the and constrained pairs. FOr theis o ra) to attempt to use multiwavelets as the transform

apphclatlo? ;[_0 gnzlalge %oqung, WS glso ?]dd the (I3,hS)—tap SCARL 4 wavelet shrinkage approach to denoising, and compare
wavelet of LeGall and Tabatabai to the mix. It has seconfiiy roqits with scalar wavelet shrinkage.

order approximation as well as linear-phase symmetry, at t Qe implemented Donoho’s wavelet shrinkage algorithm and
cost of biorthogonality instead of orthogonality.

compared the performance of the, scalar wavelet trans-
form with oversampled and critically sampled multiwavelet
schemes. The length of the test signal wéas= 512 samples.
Suppose that a signal of interesthas been corrupted byWe choseJ = 4 for the critically sampled multiwavelet
noise, so that we observe a sigral method andJ/ = 5 for oversampled multiwavelet method
and D, scalar method (thus, 16 scaling coefficients were
left untouched). In the oversampled scheme, the first row is
wherez[n] is unit-variance, zero-mean Gaussian white noisBultiplied by v/2, to better match the first eigenvector of
What is a robust method for recoveringfrom the samples the GHM system. The critically sampled scheme uses the
g[n] as best as possible? Donoho and Johnstone [11], [12] h&Q&nulas (9) to obtain two input rows ., vz, » from a single
proposed a solution via wavelet shrinkage or thresholding iAW of data. After reconstruction the two output rovs,,,
the wavelet domain. Wavelet shrinkage works as follows. @2,» aré deapproximated using (8), to yield the output signal
1) Apply J steps of the cascade algorithm to get fiie- fn]- B_9undaries are handled b_y sy.mmetric data. extt_ansion for
N/27 wavelet coefficients and¥/2” scaling coefficients the critically sampled (apprOX|m_auon/deapprpmrr_1at|on) and
corresponding tay[n]. oversampled scher_nes, and t_)y circular perlodlz_atloangr
2) Choose a thresholdy = Um and apply _Results of a typlcgl experiment are shown in T_able I and
thresholding to the wavelet coefficients (leave the scalifgd: 10- In all experiments both types of GHM filterbanks

A. Denoising by Thresholding

g[n]:f[n]—i—az[n], 7120,1,~~~,N—1

coefficients alone). performed better tha,,. The “repeated row” usually gave
3) Invert the cascade algorithm to get the denoised sigr%tter results than “approximation” preprocessing. This is
f[n]. not surprising, because “repeated row” is an oversampled

data representation, and it is well known that oversampled
representations are useful for feature extraction.

Petailed discussion of denoising via multiwavelet thresh-
o?ding, different estimates of the threshold, and more results
of numerical tests can be found in [8] and [40].

We use hard thresholding when a wavelet coefficient stays
unchanged ifw;;, > tx and is set to zero ifw;, < ty.
Donoho and Johnstone’s algorithm offers the advantages
smoothness and adaptation. Wavelet shrinkagensothin the
sense that the denoised estimﬁthas a very high probability
of being as smooth as the original signglin a variety of . ) ,
smoothness spaces (Sobolewldtr, etc.). Wavelet shrinkageB: Thresholding for Compression of 1-D Signals

also achieves near-minimax mean-square-error among possibl/e also performed a model compression experiment, using
denoisings of f, measured over a wide range of smooththe same one-dimensional signal as in the denoising experi-
ness classes. In these numerical senses, wavelet shrinkagaasts. We applied seven iterations of the cascade algorithm
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Original signal, 512 samples. Range of amplitude [—3, 10]

ettt

Noisy signal. Noise level ¢ = 0.3

V\/\/\WJ AN

Signal rcconstructed using GHM with “approximation”.

,/\/\/

W/\/MLNW e

Signal reconstructed using GHM with “repeated row”.

Signal reconstructed using D,.
Fig. 10. Denoising via wavelet shrinkage.

TABLE I
ONE-DIMENSIONAL COMPRESSION BY RETENTION OF LARGEST COEFFICIENTS

I GHM with “appr.” | GHM with “rep. row” Dy

recon with 50 largest coeffs.
¢! error 0.1298 0.1597 0.1807
{% (mean square) error 0.0448 0.0517 0.0815
£ (maximum) error 1.5709 1.0667 1.4923
recon with 75 largest cocffs.
¢! error 0.0601 0.0650 0.0890
£% (mnean square) error 0.0091 0.0107 0.0200
£°° (maximum) error 0.7959 0.9731 0.7301
recon with 100 largest coefts.
£1 error 0.0320 0.0389 0.0466
£? (mean squarc) error 0.0029 0.0030 0.0049
£2° (maximum) error 0.2821 | 0.2309 0.2867

on this 512-point signal to get the wavelet coefficienfs the largest coefficients for each transform, then inverted the
using the same three types of wavelet and multiwavelet filteascade algorithm to reconstruct the signal. The results are
banks. For a fair comparison, we retained the same numbersbbwn in Table Il and Fig. 11.
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Original signal, 512 samples. Range of amplitude [-3, 10]

VV\ANiAM N I

Reconstruction from 75 largest coeffs of GHM with “approximation”.

Reconstruction from 75 largest coeffs of GHM with “repeated row”.

Reconstruction from 75 largest coeffs of Dy transform.

Fig. 11. One-dimensional signal compression via retention of large coefficients.

For a given number of retained coefficients, the multi- TABLE Il
wavelet transforms lead to smallét (mean absolute) and DENOISING OF LENA IMAGE VA WAVELET SHRINKAGE
£2 (root mean square) errors than tl2, scalar wavelet GHM with GHM with
transform, and comparabfE® (maximum) errors. GHM with Noise | approximation | repeated row | 1)g
“approximation” is slightly superior to GHM with “repeated € error | 19.93 7.11 7.90 8.71
row.” The results of this experiment led us to try using -error | 24.99 10.56 10.53 12.79

the GHM multiwavelet with “approximation” for 2-D image

compression (with a true quantizer and coder), as discussedple |11 and in Fig. 12. Multiwvavelet schemes were superior
Section VI-D below. to D, both numerically and subjectively. According to our
expectations GHM with repeated row preprocessing slightly
outperformed GHM with approximation-based preprocessing
Given the success of the multiwavelets in denoising @i terms of mean square error. Visually, multiwavelet schemes
the model 1-D signal, we applied multiwavelet denoisingeemed to preserve the edges better (especially GHM with
to imagery. We added white Gaussian noise with variancepeated row) and reduce the Cartesian artifacts present in the
o = 25 to 512 x 512 Lena image, and applied threecalar wavelet shrinkage. This can be seen, for example, in
wavelet transforms for denoising by wavelet shrinkage: GHRe facial features (eyes, nose, lips) of the Lena images shown
with approximation preprocessing, GHM with repeated roWp Fig. 12.
preprocessing, and the Daubechies four-tap scalar wavelet. As
in the 1-D case, the depth of the cascade was chosen tobhelransform-Based Image Coding
J = 4 for GHM with approximation and’ = 5 for GHM with One of the most successful applications of the wavelet
repeated row and),. The experimental results are shown itransform is image compression. A transform-based coder

C. Denoising of Images
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Lena image with Gaussian noise
MSE 24.99

Daubechies 4 scalar

wavelet denoising, MSE 12.79

559

GHM with approximation
multiwavelet denoising, MSE 10.56

GHM repeated row
multiwavelet denoising, MSE 10.53

Fig. 12. Multiwavelet denoising.

TABLE IV
Peak SNR’s FOR COMPRESSION OFLENA

Compression Ratio 8:1 16:1 32:1 61:1
pSNR | pSNR | pSNR. | pSNR

(3,5)-tap scalar QMI 37.6 33.1 30.2 27.1
Daubechies 41 38.0 34.6 31.3 | 28.41
GHM with appr./deappr. 37.5 34.0 31.1 28.5
Chui-Lian with appr./deappr. | 38.3 34.7 31.5 28.4
constrained pair #1 35.3 31.1 27.9 25.5
constrained pair #2 34.4 30.4 27.3 24.9

operates by transforming the data to remove redundancy, tf?g

guantizing the transform coefficients (a lossy step), and final
entropy coding the quantizer output. Because of their ene
compaction properties and correspondence with the hu

of orthogonality, short support, and symmetry. The short
support of multiwavelet filters limits ringing artifacts due to
subsequent quantization. Symmetry of the filterbank not only
leads to efficient boundary handling, it also preserves centers
of mass, lessening the blurring of fine-scale features. Orthog-
onality is useful because it means that rate-distortion optimal
guantization strategies may be employed in the transform
domain and still lead to optimal time-domain gquantization, at
least when error is measured in a mean-square sense. Thus it
is natural to consider the use of multiwavelets in a transform-
ed image coder.
€Ve employed a production image coder to compare the
multiwavelet algorithms of Section V with two scalar
ﬂvelets: the Daubechies four-tap orthogonal wavelet and the

visual system, wavelet representations have produced supeffor)-tapP symmetric QMF of LeGall and Tabatabali. Five types

objective and subjective results in image compression [

ﬂf wavelet transform were used:
1

[5], [26], [47]. Since a wavelet basis consists of functions * (3, 5)-tap scalar wavelet;
with short support for high frequencies and long support® Da scalar wavelet;

for low frequencies, large smooth areas of an image may* approximation-based preprocessing with GHM muilti-

be represented with very few bits, and detail added where wavelets;

it is needed. Multiwavelet decompositions offer all of these ¢ approximation-based preprocessing with Chui-Lian mul-

traditional advantages of wavelets, as well as the combination tiwavelets;
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Original Lena image (3,5)-tap scalar wavelet
32:1 compression, pSNR 30.2

Daubechies 4 Constrained Pair #1
32:1 compression, pSNR 31.3 32:1 compression, pSNR 27.9

GHM with approximation  Chui-Lian with approximation
32:1 compression, pSNR 31.1 32:1 compression, pSNR 31.5

Fig. 13. Wavelet and multiwvavelet compression of Lena image.

« adjacent rows input with the constrained pair 1 multiEach of these wavelet transforms was followed by entropy-
wavelet; constrained scalar quantization and entropy coding. We made

« adjacent rows input with the constrained pair 2 multthe assumption that the histograms of subband (or wavelet

wavelet; transform subblock) coefficient values obeyed a Laplacian
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Original geometric pattern Detail of original pattern

Daubechies 4 scalar wavelet Biorthogonal 3-5 scalar
compression (32:1, pSNR 31.52) compression (32:1, pSNR 23.05)

Chui-Lian with approximation Constrained pair #1 adjacent row
multiwavelet compression multiwavelet compression
(32:1, pSNR 37.04) (32:1, pSNR. 29.16)

Fig. 14. Wavelet and multiwavelet compression of geometric pattern.

distribution [26], and designed a uniform scalar quantizeat a variety of compression ratios. The results are shown
The quantizer optimized the bit allocation among the differemt Tables IV and V, and in Figs. 13 and 14. On Lena,
subbands by using an operational rate-distortion approatie Chui-Lian multiwavelet outperformed both th&, and
(minimizing the functionalD + AR) [33]. We then entropy- (3, 5) scalar wavelets, while the GHM multiwavelet was
coded the resulting coefficient streams using a combinationafmparable withD, and outperformed (3, 5) at compression
zero-run-length coding and adaptive Huffman coding, as in thatios of 32:1 and 64 : 1. The images in Fig. 13 show that both
FBI's wavelet scalar quantization standard [14]. the approximation-based multiwvavelet schemes produce fewer
We applied these different wavelet image coders to tigartesian artifacts than the scalar wavelet, and the Chui-Lian
Lena (NITF6) image, as well as a geometric test pattenmultiwavelet preserves more detail (e.g., the eyelashes). The
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TABLE V
Peak SNR’s FOR COMPRESSION OFGEOMETRIC TEST PATTERN

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 8, NO. 4, APRIL 1999

We then applied this arsenal of techniques to two ba-
sic signal processing problems, denoising via thresholding
(wavelet shrinkage) and data compression. After developing
the approach via model problems in one dimension, we applied
the various new multiwavelet approaches to the processing of
images, frequently obtaining performance superior to the com-
parable scalar wavelet transform. These results suggest that

Compression Ratio 8:1 16:1 32:1 64:1

pSNR | pSNR | pSNR | pSNR
(3,5)-tap scalar QMF 63.8 36.2 23.1 16.5
Daubechies 4 78.2 44.9 31.5 21.8
GHM with appr./deappr. 56.7 35.7 27.2 22.2
Chui-Lian with appr./deappr. o0 57.3 37.0 27.3
constrained pair 1 91.2 41.6 29.2 21.8
constrained pair 2 53.6 34.6 24.8 21.1

adjacent-row method did not work well on Lena. However,

further work in the design and application of multiwavelets to
signal and image processing is well warranted.

ACKNOWLEDGMENT

The authors would like to thank S. Hills for help in

the adjacent-row method did do well on the geometric teRfogramming the image compressions and S. Mallat for useful

pattern image (Fig. 14) with the constrained pair 1
outperformingD, (and GHM with approximation) at the 8:1
compression ratio. When using the repeated row algorithm,
the constrained pairs significantly outperformed the GHM
symmetric multiwavelet, demonstrating the importance of théll
eigenvector constraints (14) and (15). A close look at the dﬁ;z
tails of the compressed/decompressed test patterns shows t
the CP-1 compression “rang” over a shorter distance than the
D, compression. While the (3, 5)-tap scalar wavelet produce@]
minimal ringing, it significantly degraded the checkerboard
pattern. The Chui-Lian multiwavelet did the best, yielding a4l
lossless (1) compression at 8:1 and beating all contenders @}
all compression ratios.

These preliminary results suggest that multiwvavelets art]
worthy of further investigation as a technique for image com-,
pression. Issues to address include the design of multiwavelets
with symmetry and higher order of approximation than the
GHM system, the role of eigenvector constraints, and als®
further exploration of regularity for multiwavelets [42]. One [g]
might also apply zerotree-coding methods [32] in a multi-
wavelet context. Other interesting results on implementati

of multiwavelets for image compression can be found in [7]. ]
[12]

[13]
VII.

After reviewing the recent notion of multiwavelets (matrix{14]
valued wavelet systems), we have examined the use of muji;,
wavelets in a filterbank setting for discrete-time signal pro-
cessing. Multiwavelets offer the advantages of combinirig®l
symmetry, orthogonality, and short support, properties not
mutually achievable with scalar two-band wavelet systemgz]
However, multiwavelets differ from scalar wavelet systems
in requiring two or more input streams to the multiwavelefg
filterbank. We described two methods (repeated row and
approximation/deapproximation) for obtaining such a vectdt]
input stream from a 1-D signal. We developed the theory
of symmetric extension for multiwavelet filterbanks, which2o]
matches nicely with approximation-based preprocessing. Moy-
ing on to 2-D signal processing, we described an ad&iz-l]
tional algorithm for multiwavelet filtering (two rows at a[22]
time), and developed a new family of multiwavelets (th
constrained pairs) that is well-suited to this two-row-at-a-tim
filtering.

CONCLUSIONS

23]

«cp.discussions.
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