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The Application of Multiwavelet
Filterbanks to Image Processing
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Abstract— Multiwavelets are a new addition to the body
of wavelet theory. Realizable as matrix-valued filterbanks
leading to wavelet bases, multiwavelets offer simultaneous
orthogonality, symmetry, and short support, which is not
possible with scalar two-channel wavelet systems. After
reviewing this recently developed theory, we examine the
use of multiwavelets in a filterbank setting for discrete-time
signal and image processing. Multiwavelets differ from scalar
wavelet systems in requiring two or more input streams to the
multiwavelet filterbank. We describe two methods (repeated
row and approximation/deapproximation) for obtaining
such a vector input stream from a one-dimensional (1-D)
signal. Algorithms for symmetric extension of signals at
boundaries are then developed, and naturally integrated with
approximation-based preprocessing. We describe an additional
algorithm for multiwavelet processing of two-dimensional (2-D)
signals, two rows at a time, and develop a new family of
multiwavelets (the constrained pairs) that is well-suited to this
approach. This suite of novel techniques is then applied to
two basic signal processing problems, denoising via wavelet-
shrinkage, and data compression. After developing the approach
via model problems in one dimension, we apply multiwavelet
processing to images, frequently obtaining performance superior
to the comparable scalar wavelet transform.

Index Terms—Denoising, filterbanks, image coding, multi-
wavelets, wavelets.

I. INTRODUCTION

W AVELETS are a useful tool for signal processing
applications such as image compression and denoising.

Until recently, only scalar wavelets were known: wavelets
generated byone scaling function. But one can imagine a
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situation when there ismore than onescaling function [16].
This leads to the notion ofmultiwavelets, which have several
advantages in comparison to scalar wavelets [36]. Such fea-
tures as short support, orthogonality, symmetry, and vanishing
moments are known to be important in signal processing.
A scalar waveletcannot possess all these properties at the
same time [35]. On the other hand, a multiwavelet systemcan
simultaneously provide perfect reconstruction while preserving
length (orthogonality), good performance at the boundaries
(via linear-phase symmetry), and a high order of approxi-
mation (vanishing moments). Thus, multiwavelets offer the
possibility of superior performance for image processing ap-
plications, compared with scalar wavelets.

We describe here novel techniques for multirate signal
processing implementations of multiwavelets, and present ex-
perimental results for the application of multiwavelets to
signal denoising and image compression. The paper is or-
ganized as follows. Section II reviews the definition and
construction of continuous-time multiwavelet systems, and
Section III describes the connection between multiwavelets
and matrix-valued multirate filterbanks. In Section IV, we de-
velop several techniques for applying multiwavelet filter banks
to one-dimensional (1-D) signals, including approximation-
based preprocessing and symmetric extension for finite-length
signals. Two-dimensional (2-D) signal processing offers a new
set of problems and possibilities for the use of multiwavelets;
we discuss several methods for the 2-D setting in Section V,
including a new family of multiwavelets, the constrained pairs.
Finally, in Section VI we describe the results of our application
of multiwavelets to signal denoising and data compression.

II. M ULTIWAVELETS—SEVERAL WAVELETS

WITH SEVERAL SCALING FUNCTIONS

As in the scalar wavelet case, the theory of multiwavelets
is based on the idea of multiresolution analysis (MRA). The
difference is that multiwavelets have several scaling functions.
The standard multiresolution has one scaling function.

• The translates are linearly independent and
produce a basis of the subspace.

• The dilates generate subspaces , ,
such that
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Fig. 1. Geronimo–Hardin–Massopust pair of scaling functions.

Fig. 2. Geronimo–Hardin–Massopust multiwavelets.

• There is one wavelet . Its translates produce
a basis of the “detail” subspace to give :

For multiwavelets, the notion of MRA is the same except that
now a basis for is generated by translates of scaling
functions , , . The vector

, will satisfy a matrix dilation
equation (analogous to the scalar case)

(1)

The coefficients are by matrices instead of scalars.
Associated with these scaling functions are wavelets

, satisfying thematrix wavelet equation

(2)

Again, is a vector and the
are by matrices.

As in the scalar case, one can find the conditions of
orthogonality and approximation for multiwavelets [20], [29],
[36], [37]; this is discussed below.

A very important multiwavelet system was constructed by
Geronimo, Hardin, and Massopust [16] (see [1] for another
early multiwavelet construction). Their system contains the
two scaling functions shown in Fig. 1 and the
two wavelets shown in Fig. 2. The dilation and

wavelet equations for this system have four coefficients:

(3)

(4)

There are four remarkable properties of the Geron-
imo–Hardin–Massopust scaling functions, as follows.

• They each have short support (the intervals and
).

• Both scaling functions are symmetric, and the wavelets
form a symmetric/antisymmetric pair.
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Fig. 3. Symmetric pair of orthogonal scaling functions.

Fig. 4. Chui–Lian symmetric/antisymmetric orthogonal scaling functions.

• All integer translates of the scaling functions are orthog-
onal.

• The system has second order of approximation (locally
constant and locally linear functions are in).

Let us stress that a scalar system with one scaling function
cannot combine symmetry, orthogonality, and second order ap-
proximation. Moreover, a solution of a scalar dilation equation
with four coefficients is supported on the interval !

Other useful orthogonal multiwavelet systems with second-
order approximation are thesymmetric pairdetermined by
three coefficients

and the Chui–Lian pair [6] determined by the coefficients

(5)

Corresponding scaling functions are shown in Figs. 3 and 4.
Observe that for the symmetric pair one scaling function is

the reflection of the other about its center point. Moreover, the
Chui–Lian symmetric/antisymmetric scaling functions are the
sum and difference of the two functions from the symmetric
pair. In this article we will make use of several other non-
symmetric multiwavelets with desirable properties. More on
the construction of multiscaling functions and multiwavelets
can be found in [1], [9], [13], [18], [22], [24], [30], [31], [38],
[39], and [41].

III. M ULTIWAVELETS AND MULTIRATE FILTERBANKS

Corresponding to each multiwavelet system is a matrix-
valued multirate filterbank [15], or multifilter. A multiwavelet
filterbank [36] has “taps” that are matrices (in this
paper, we will be working with ). Our principal exam-
ple is the four-coefficient symmetric multiwavelet filterbank
whose lowpass filter was reported in [16]. This filter is given
by the four 2 2 matrices of (3). Unlike a scalar two-
band paraunitary filterbank, the corresponding highpass filter
[specified by the four 2 2 matrices of (4)] cannot be
obtained simply as an “alternating flip” of the lowpass filter;
the wavelet filters must be designed [36]. The resulting
two-channel, 2 2 matrix filterbank operates ontwo input
data streams, filtering them intofour output streams, each of
which is downsampled by a factor of two. This is shown in
Fig. 5. Each row of the multifilter is a combination of two
ordinary filters, one operating on the first data stream and the
other operating on the second. For example, the first lowpass
multiwavelet filter given in (3) operates as on the first
input stream and on the second. It is a combination of
the Haar filter on the first stream and the unit impulse
response on the second stream.
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Fig. 5. A multiwavelet filterbank, iterated once.

We ask that the matrix filter coefficients satisfy the orthog-
onality (“block-paraunitarity”) condition

(6)

In the time domain, filtering followed by downsampling is
described by an infinite lowpass matrix with double shifts:

Each of the filter taps is a 2 2 matrix. The eigenvalues
of the matrix are critical. The solution to the matrix dilation
equation (1) is a two-element vector of scaling functions

. The span of integer translates of the
multiwavelet scaling functions is the “lowpass” space, the
set of scale-limited signals [17]. Any continuous-time function

in can be expanded as a linear combination

The superscript denotes an expansion “at scale level 0.”
is completely described by the sequences .

Given such a pair of sequences, their coarse approximation
(component in ) is computed with the lowpass part of the
multiwavelet filterbank:

...

...

...

...

Because the multifilter is finite impulse response (FIR),
each apparently infinite sum in the matrix multiplication
is actually finite and well-defined. Analogously, the details

in are computed with the highpass part
. Thus, the multiwavelet filter bank plays the same

mediating role in multiresolution analysis that a scalar fil-
ter bank plays for scalar wavelet systems. If the matrix
has eigenvalues and the corresponding
eigenvectors have a special form, then polynomials of degree
less than belong to the space [20], [29]. This holds
for the Geronimo–Hardin–Massopust multiwavelet filter with

; linear functions can be exactly represented as linear

Fig. 6. Multiwavelet filterbank with “repeated row” inputs.

combinations of integer translates of the scaling functions
and .

IV. ONE-DIMENSIONAL SIGNAL PROCESSING

WITH MULTIWAVELET FILTERBANKS

The lowpass filter and highpass filter consist of
coefficients corresponding to the dilation equation (1) and
wavelet equation (2). But in the multiwavelet setting these
coefficients are by matrices, and during the convolution
step they must multiply vectors (instead of scalars). This means
that multifilter banksneed input rows. We will consider
several ways to produce those rows. In this section the signals
are 1-D; in Section V we consider 2-D signal processing.

A. Oversampled Scheme

The most obvious way to get two input rows from a given
signal is to repeat the signal. Two identical rows go into the
multifilter bank. This procedure, which we call “repeated row,”
is shown in Fig. 6. It introduces oversampling of the data by a
factor of two. Oversampled representations have proven useful
in feature extraction; however, they require more calculation
than critically sampled representations. Furthermore, in data
compression applications, one is seeking to remove redun-
dancy, not increase it. In the case of 1-D signals the “repeated
row” scheme is convenient to implement, and our experiments
on denoising of 1-D signals were encouraging (see Section VI-
A). In two dimensions, the oversampling factor increases to
four, limiting the usefulness of this scheme to applications
such as denoising which do not require critically sampled or
near-critically sampled representation of the data.

B. A Critically Sampled Scheme:
Approximation-Based Preprocessing

A different way to get input rows for the multiwavelet
filterbank is topreprocessthe given scalar signal . For
data compression, where one is trying to find compact trans-
form representations for a dataset, it is imperative to find
critically sampled multiwavelet transform schemes. We de-
scribe a preprocessing algorithm based on the approximation
properties of the continuous-time multiwavelets, which yields
a critically sampled signal representation. We develop this
scheme (suggested to us by J. Geronimo) in the context
of Geronimo–Hardin–Massopust multiwavelets; however, it
works equally well for the Chui–Lian multiwavelets with
minor modifications.

Let the continuous-time function belong to the scale-
limited subspace generated by translates of the GHM
scaling functions. This means that is a linear combination
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Fig. 7. Approximation-based preprocessing and two steps of filtering for
1-D signals.

of translates of those functions:

(7)

Suppose that the input sequence contains samples of
at half-integers:

vanishes at all integer points. is nonzero only at the
integer 1. Sampling the relation (7) at integers and half-integers
gives

(8)

The coefficients , can be easily found from (8):

Taking into account the symmetry of , we finally get

(9)

The relations (9) give a natural way to get two input rows
starting from a given signal . To synthesize the

signal on output we invert (9) and recover (8). This sequence
of operations is depicted in Fig. 7.

In the case of Chui–Lian multiwavelets, the only difference
from the above approach is that and ,
so that we use the samples ofat the integers to determine
the coefficients and then find the from the samples
of at the half-integers.

Given any , the preprocessing step (9) followed
by filtering will produce nontrivial output in the lowpass
branch only. It yields zero output in the highpass subband.
For example, (locally in ) gives and

, which is the eigenvector of the matrix with
eigenvalue 1.

This preprocessing algorithm also maintains a critically
sampled representation: if the data enters at rate, preprocess-
ing yields two streams at rate for input to the multifilter,
which produces four output streams, each at a rate.

Another advantage of this approximation-based preprocess-
ing method is that it fits naturally with symmetric extension
for multiwavelets (discussed below in Section IV-C). In other
words, if we symmetrically extend a finite length signal
at its boundaries and implement the approximation formulas
(9), then the two rows from the preprocessor will
have the appropriate symmetry.

One also can develop a general approximation-type prepro-
cessing based on the following idea. Suppose again that our
given signal lies in . This implies that

(10)

The goal of preprocessing is to find the coefficients from
the signal samples.

Assume that a multiwavelet system hasscaling functions,
all supported on . Now restrict (10) to this interval:

(11)

Suppose that samples are the values of the
function at the points

The representation (11) gives a linear system for the
coefficients . The following samples

give the values of .

Repeating this procedure we find all the . If some of the
scaling functions have support longer than , we will need
several initial (boundary) values of . In the
case of finite length signals, these numbers can be obtained
from the conditions of periodization or symmetric extension
(Section IV-C). Other multiwavelet preprocessing techniques
are discussed in [7], [19], [27], [41], and [43]–[46].

C. Symmetric Extension of Finite-Length Signals

In practice all signals have finite length, so we must devise
techniques for filtering such signals at their boundaries. There
are two common methods for filtering at the boundary that
preserve critical sampling. The first is circular periodization
(periodic wrap) of the data. This method introduces discon-
tinuities at the boundaries; however, it can be used with
almost any filterbank. The second approach is symmetric
extension of the data. Symmetric extension preserves signal
continuity, but can be implemented only with linear-phase
(symmetric and/or antisymmetric) filterbanks [3], [4], [23],
[34]. We now develop symmetric extension for linear-phase
multiwavelet filters, such as the Geronimo–Hardin–Massopust
and Chui–Lian multifilters. This proves useful for image
compression applications (Section VI).

Recall the basic problem: given an input signal with
samples and a linear-phase (symmetric or antisymmetric)

filter, how can we symmetrically extend before filtering
and downsampling in a way that preserves the critically
sampled nature of the system? The possibilities for such
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an extension have been enumerated in [4]. Depending on
the parity of the input signal (even- or odd-length) and
the parity and symmetry of the filter, there is a specific
nonexpansive symmetric extension of both the input signal
and the subband outputs. For example, an even-length input
signal passed through an even-length symmetric lowpass filter
should be extended by repeating the first and last samples, i.e.,
a half-sample-symmetric signal is matched to a half-sample-
symmetric filter. Similarly, when the lowpass filter is of odd
length (whole-sample-symmetry), the input signal should be
extended without repeating the first or last samples.

Each row of the GHM multifilter [(3) and (4)] is a linear
combination of two filters, one for each input stream. One filter
(applied to the first stream) is of even length; the second is of
odd length. Thus we should extend the first stream using half-
sample-symmetry (repeating the first and last samples) and
extend the second stream using whole-sample-symmetry (not
repeating samples). Then, when synthesizing the input signal
from the subband outputs, we must symmetrize the subband
data differently depending on whether it is going into an even-
or odd-length filter.

In particular, suppose we are given two input rows (one of
even length, the other of odd length):

If they are symmetrically extended as

(12)

at the start and

(13)

at the end to give two symmetric rows, then after one step of
the cascade algorithm we have the four symmetric subband
outputs as in (13a), shown at the bottom of the page. The
application of the (linear-phase) multiwavelet synthesis filters
now yields the symmetric extension of the original signal.

Multiwavelet symmetric extension can be done not only for
linear-phase filters. For example, the symmetric pair of scaling
functions shown in Fig. 3 admits the extension of input data
rows and as in (13b), shown at the bottom of the

page. The placeholder is an arbitrary real number. After
filtering and downsampling of this extended data, the output
rows will have the same symmetry. In this way we obtain
a nonexpansive transform of finite-length input data which
behaves well at the boundaries under lossy quantization.

D. Computational Complexity

We briefly compare the computational demands of multi-
wavelet and scalar wavelet filtering. One level of the cascade
algorithm with the GHM multifilter does require slightly more
floating point operations than the scalar wavelet. General
convolution with four 2 2 matrix coefficients requires
16 multiplications and 14 additions to yield two outputs.
However, in the case of the GHM multifilter, the presence of
many zero coefficients and the linear-phase symmetry may be
exploited to reduce the computation to eight multiplications
and eight additions for the lowpass filter and nine multi-
plications, 11 additions, and two sign-flips for the highpass
filter, requiring a total of 17 multiplications, 19 additions, and
two sign-flips (38 FLOPS total) for four output values. This
amounts to 4.25 multiplications and 9.5 FLOPS per output,
compared with four multiplications and seven FLOPS per
output for the scalar wavelet filter and 2.5 multiplications
and 5.5 FLOPS for the (3, 5)-tap linear-phase scalar wavelet of
LeGall and Tabatabai. These complexity figures do not take
into account the approximation/deapproximation processing,
if any.

V. TWO-DIMENSIONAL SIGNAL PROCESSING

WITH MULTIWAVELET FILTERBANKS

Multiwavelet filtering of images needs algorithms. One class
of such algorithms is derived simply by taking tensor products
of the 1-D methods described in the previous section. Another
class of algorithms stems from using the matrix filters of the
multiwavelet system for fundamentally 2-D processing. We
discuss each of these alternatives now.

A. Separable Schemes Based on 1-D Methods

Section IV described two different ways to decompose a
one-dimensional signal using multiwavelets. Each of these
can be turned into a two-dimensional algorithm by taking a
tensor product, i.e., by performing the 1-D algorithm in each
dimension separately.

(13a)

(13b)
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Suppose our 2-D data is represented as an matrix
. The first step is to preprocess all the rows and store the

result as a square array such that the first half of each row
contains coefficients corresponding to the first scaling function
and the second half contains coefficients corresponding to the
second scaling function. The next operation is preprocessing
of the columns of the array to produce an output matrix

, such that the first half of each column of contains
coefficients corresponding to the first scaling function and the
second half of each column corresponds to the second scaling
function. Then the multiwavelet cascade starts—it consists of
iterative low- and highpass filtering of the scaling coefficients
in horizontal and vertical directions. The result after one
cascade step can be realized as the following matrix:

Here a typical block contains lowpass coefficients
corresponding to the first scaling function in the horizontal
direction and highpass coefficients corresponding to the second
wavelet in the vertical direction. The next step of the cascade
will decompose the “low-lowpass” submatrix in a
similar manner.

As noted before, the separable product of 1-D “repeated
row” algorithms leads to a 4 : 1 data expansion, restricting
the utility of this approach to applications such as denoising
by thresholding, for which critical sampling is irrelevant. The
separable product of the approximation-based preprocessing
methods described in Section IV-B yields a critically sampled
representation, potentially useful for both denoising and data
compression.

B. Constrained Multiwavelets

A different approach to 2-D multiwavelet filtering is to make
use of the two-dimensionality of the matrix filter coefficients.
When processing an image with a scalar filterbank one usually
uses as input the rows and columns of the image. For a
multiwavelet system we need input signals. Where can we
get them? The first solution which comes to mind is very
simple: just use adjacent rows as the input. For the 22
multiwavelets used here, this would mean taking two rows of
the image at a time, and applying the matrix filter coefficients
to the sequence of two-element vectors in the input stream.

However, a naive implementation of this approach does
not lead to good results (see Table IV). This is due to the
intricacies of multiwavelet approximation. Approximation of
degree is important for image compression because locally
polynomial data can be captured in a few lowpass coefficients.
A wavelet system (scalar or multiwavelet) satisfies approxi-
mation of degree (or accuracy ) if polynomials of degree
less than belong to the scale-limited space. Image data
is often locally well-approximated by constant, linear, and
quadratic functions; thus, such local approximations remain in
the lowpass space after filtering and downsampling. This
is one reason why simply retaining the lowpass coefficients

of a wavelet decomposition with accuracy ( vanishing
moments) produces good results while compressing the image
representation into very few coefficients [47].

When applying multiwavelets to 2-D (image) processing, we
use this notion of local approximation as a motivation—we
wish to capture locally constant and linear features in the
lowpass coefficients. Suppose we have a multiwavelet system
generated by two scaling functions with accuracy

(this would mean at least one vanishing wavelet
moment in the scalar case). Then constant functions
locally belong to the scale-limited space. It has been shown
[20] that the repeated constant one is an eigenvalue of the
filtering and downsampling operator, and there exists a left
eigenvector

with

In fact, and , so that

In the continuous-time subspace this eigenvector leads to
the constant function:

Assuming for the moment that our image is locally constant,
we input two equal, constant rows of the image (2-D signal)
into the multiwavelet filter bank. The output will be zero in
the highpass and a constant

in the lowpass. If the eigenvector of satisfies
, then we will get and the constant input yields

a constant lowpass output. However, there is no guarantee
of this happy state; for example, in the case of the Geron-
imo–Hardin–Massopust multiwavelet (3)

and therefore . Thus, the lowpass responses of an
arbitrary multifilter to a constant input aredifferentconstants.
Quantization of these lowpass multifilter outputs (for lossy
compression) will then introduce a rippled texture in the
lowpass part of the image, creating unacceptable artifacts.
This is borne out by experiments using the GHM multifilter
(Section VI-D below).

Similar arguments hold for linear approximation [20]: a
multiwavelet system has linear approximation (accuracy of
order ) if and only if there are two left eigenvectors.
The first is
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Fig. 8. Constrained pair one.

satisfying

as before. The second eigenvector is

also satisfying

For linear approximation we must have

and

for some constants and , so that

This second eigenvector leads to linear approximation; indeed

Again, there is no reason to expect that , and so
if we input two equal linear rows into the multifilter, they
will most likely emerge as twodifferentlinear rows. Thus, the
locally linear nature of many images will become distorted
under such a multiwavelet transform, and this distortion will
lead to unacceptable artifacts under quantization.

One way to avoid this phenomenon is to construct a
multiwavelet system in which the eigenvectors have pairwise
equal components

(14)

(15)

which produce two equal linear outputs as the response to two
equal linear inputs. Such multiwavelets can be constructed,
but as we will see, the restrictions (14) and (15) imply some
constraints on the properties of the multiscaling functions.

Consider a multiwavelet system with two scaling functions
satisfying a matrix dilation equation with four coefficients

(16)

It is proven in [20] that the vectors
must satisfy the following system of equations:

(17)

We want

(18)

and

(19)

i.e., . From the dilation equation (16) and the
approximation constraints (17), it follows that is a mutual
eigenvector of all four matrices :

(20)

Consider now a scalar function

According to (16) and (20), satisfies the scalar dilation
equation

The only solution to this equation with orthogonal translates
and second order of approximation is Daubechies’scaling
function [10]. Thus, any orthogonal pair which has
second order of approximation, satisfies the dilation equation
(16), and the eigenvector constraints (18) and (19) must sum
to :

We call such pairsconstrainedmultiscaling functions. There
are infinitely many constrained orthogonal solutions of (20).
Plots of two of them are shown in Figs. 8 and 9. Refer-
ence [25] used ideas similar to those underlying constrained
multiwavelets to construct different types of “balanced” mul-
tiwavelets.

The implementation of constrained multiwavelets for the
2-D wavelet transform is straightforward. In each step of
Mallat’s algorithm [26], one first processes pairs of rows and
then pairs of columns. Because locally constant and linear
data are passed through to the lowpass ouputs of a constrained
multifilter, the performance of these constrained multiwavelets
in image compression is much better than that of thenoncon-
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Fig. 9. Constrained pair two.

strainedGHM pair, when applied by using two adjacent rows
as the input. This is confirmed by the experiments reported in
the next section, as shown in Tables IV and V.

VI. SIGNAL PROCESSINGAPPLICATIONS OFMULTIWAVELETS

In this section, we are going to compare the numerical
performance of GHM and constrained multiwavelets with
Daubechies scalar wavelets. We perform these compar-
isons in two standard wavelet applications: signal denoising
and data compression. We first develop these applications
for 1-D signals, then extend them to images. wavelets
were chosen because they have two vanishing moments,
are orthogonal, and have four coefficients in the dilation
equation—exactly like the GHM and constrained pairs. For the
application to image coding, we also add the (3, 5)-tap scalar
wavelet of LeGall and Tabatabai to the mix. It has second-
order approximation as well as linear-phase symmetry, at the
cost of biorthogonality instead of orthogonality.

A. Denoising by Thresholding

Suppose that a signal of interesthas been corrupted by
noise, so that we observe a signal:

where is unit-variance, zero-mean Gaussian white noise.
What is a robust method for recoveringfrom the samples

as best as possible? Donoho and Johnstone [11], [12] have
proposed a solution via wavelet shrinkage or thresholding in
the wavelet domain. Wavelet shrinkage works as follows.

1) Apply steps of the cascade algorithm to get the
wavelet coefficients and scaling coefficients

corresponding to .
2) Choose a threshold and apply

thresholding to the wavelet coefficients (leave the scaling
coefficients alone).

3) Invert the cascade algorithm to get the denoised signal
.

We use hard thresholding when a wavelet coefficientstays
unchanged if and is set to zero if .
Donoho and Johnstone’s algorithm offers the advantages of
smoothness and adaptation. Wavelet shrinkage issmoothin the
sense that the denoised estimatehas a very high probability
of being as smooth as the original signal, in a variety of
smoothness spaces (Sobolev, Hölder, etc.). Wavelet shrinkage
also achieves near-minimax mean-square-error among possible
denoisings of , measured over a wide range of smooth-
ness classes. In these numerical senses, wavelet shrinkage is

TABLE I
DENOISING VIA WAVELET SOFT THRESHOLDING

superior to other smoothing and denoising algorithms. Heuris-
tically, wavelet shrinkage has the advantage of not adding
“bumps” or false oscillations in the process of removing noise,
because of the local and smoothness-preserving nature of the
wavelet transform. Wavelet shrinkage has been successfully
applied to SAR imagery as a method for clutter removal [28].
It is natural to attempt to use multiwavelets as the transform
for a wavelet shrinkage approach to denoising, and compare
the results with scalar wavelet shrinkage.

We implemented Donoho’s wavelet shrinkage algorithm and
compared the performance of the scalar wavelet trans-
form with oversampled and critically sampled multiwavelet
schemes. The length of the test signal was samples.
We chose for the critically sampled multiwavelet
method and for oversampled multiwavelet method
and scalar method (thus, 16 scaling coefficients were
left untouched). In the oversampled scheme, the first row is
multiplied by , to better match the first eigenvector of
the GHM system. The critically sampled scheme uses the
formulas (9) to obtain two input rows , from a single
row of data. After reconstruction the two output rows ,

are deapproximated using (8), to yield the output signal
. Boundaries are handled by symmetric data extension for

the critically sampled (approximation/deapproximation) and
oversampled schemes, and by circular periodization for.

Results of a typical experiment are shown in Table I and
Fig. 10. In all experiments both types of GHM filterbanks
performed better than . The “repeated row” usually gave
better results than “approximation” preprocessing. This is
not surprising, because “repeated row” is an oversampled
data representation, and it is well known that oversampled
representations are useful for feature extraction.

Detailed discussion of denoising via multiwavelet thresh-
olding, different estimates of the threshold, and more results
of numerical tests can be found in [8] and [40].

B. Thresholding for Compression of 1-D Signals

We also performed a model compression experiment, using
the same one-dimensional signal as in the denoising experi-
ments. We applied seven iterations of the cascade algorithm
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Fig. 10. Denoising via wavelet shrinkage.

TABLE II
ONE-DIMENSIONAL COMPRESSION BY RETENTION OF LARGEST COEFFICIENTS

on this 512-point signal to get the wavelet coefficients,
using the same three types of wavelet and multiwavelet filter
banks. For a fair comparison, we retained the same number of

the largest coefficients for each transform, then inverted the
cascade algorithm to reconstruct the signal. The results are
shown in Table II and Fig. 11.
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Fig. 11. One-dimensional signal compression via retention of large coefficients.

For a given number of retained coefficients, the multi-
wavelet transforms lead to smaller (mean absolute) and

(root mean square) errors than the scalar wavelet
transform, and comparable (maximum) errors. GHM with
“approximation” is slightly superior to GHM with “repeated
row.” The results of this experiment led us to try using
the GHM multiwavelet with “approximation” for 2-D image
compression (with a true quantizer and coder), as discussed in
Section VI-D below.

C. Denoising of Images

Given the success of the multiwavelets in denoising of
the model 1-D signal, we applied multiwavelet denoising
to imagery. We added white Gaussian noise with variance

to 512 512 Lena image, and applied three
wavelet transforms for denoising by wavelet shrinkage: GHM
with approximation preprocessing, GHM with repeated row
preprocessing, and the Daubechies four-tap scalar wavelet. As
in the 1-D case, the depth of the cascade was chosen to be

for GHM with approximation and for GHM with
repeated row and . The experimental results are shown in

TABLE III
DENOISING OF LENA IMAGE VIA WAVELET SHRINKAGE

Table III and in Fig. 12. Multiwavelet schemes were superior
to both numerically and subjectively. According to our
expectations GHM with repeated row preprocessing slightly
outperformed GHM with approximation-based preprocessing
in terms of mean square error. Visually, multiwavelet schemes
seemed to preserve the edges better (especially GHM with
repeated row) and reduce the Cartesian artifacts present in the
scalar wavelet shrinkage. This can be seen, for example, in
the facial features (eyes, nose, lips) of the Lena images shown
in Fig. 12.

D. Transform-Based Image Coding

One of the most successful applications of the wavelet
transform is image compression. A transform-based coder
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Fig. 12. Multiwavelet denoising.

TABLE IV
PEAK SNR’S FOR COMPRESSION OFLENA

operates by transforming the data to remove redundancy, then
quantizing the transform coefficients (a lossy step), and finally
entropy coding the quantizer output. Because of their energy
compaction properties and correspondence with the human
visual system, wavelet representations have produced superior
objective and subjective results in image compression [2],
[5], [26], [47]. Since a wavelet basis consists of functions
with short support for high frequencies and long support
for low frequencies, large smooth areas of an image may
be represented with very few bits, and detail added where
it is needed. Multiwavelet decompositions offer all of these
traditional advantages of wavelets, as well as the combination

of orthogonality, short support, and symmetry. The short
support of multiwavelet filters limits ringing artifacts due to
subsequent quantization. Symmetry of the filterbank not only
leads to efficient boundary handling, it also preserves centers
of mass, lessening the blurring of fine-scale features. Orthog-
onality is useful because it means that rate-distortion optimal
quantization strategies may be employed in the transform
domain and still lead to optimal time-domain quantization, at
least when error is measured in a mean-square sense. Thus it
is natural to consider the use of multiwavelets in a transform-
based image coder.

We employed a production image coder to compare the
2-D multiwavelet algorithms of Section V with two scalar
wavelets: the Daubechies four-tap orthogonal wavelet and the
(3, 5)-tap symmetric QMF of LeGall and Tabatabai. Five types
of wavelet transform were used:

• (3, 5)-tap scalar wavelet;
• scalar wavelet;
• approximation-based preprocessing with GHM multi-

wavelets;
• approximation-based preprocessing with Chui-Lian mul-

tiwavelets;
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Fig. 13. Wavelet and multiwavelet compression of Lena image.

• adjacent rows input with the constrained pair 1 multi-
wavelet;

• adjacent rows input with the constrained pair 2 multi-
wavelet;

Each of these wavelet transforms was followed by entropy-
constrained scalar quantization and entropy coding. We made
the assumption that the histograms of subband (or wavelet
transform subblock) coefficient values obeyed a Laplacian
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Fig. 14. Wavelet and multiwavelet compression of geometric pattern.

distribution [26], and designed a uniform scalar quantizer.
The quantizer optimized the bit allocation among the different
subbands by using an operational rate-distortion approach
(minimizing the functional ) [33]. We then entropy-
coded the resulting coefficient streams using a combination of
zero-run-length coding and adaptive Huffman coding, as in the
FBI’s wavelet scalar quantization standard [14].

We applied these different wavelet image coders to the
Lena (NITF6) image, as well as a geometric test pattern,

at a variety of compression ratios. The results are shown
in Tables IV and V, and in Figs. 13 and 14. On Lena,
the Chui–Lian multiwavelet outperformed both the and
(3, 5) scalar wavelets, while the GHM multiwavelet was
comparable with and outperformed (3, 5) at compression
ratios of 32 : 1 and 64 : 1. The images in Fig. 13 show that both
the approximation-based multiwavelet schemes produce fewer
Cartesian artifacts than the scalar wavelet, and the Chui–Lian
multiwavelet preserves more detail (e.g., the eyelashes). The
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TABLE V
PEAK SNR’S FOR COMPRESSION OFGEOMETRIC TEST PATTERN

adjacent-row method did not work well on Lena. However,
the adjacent-row method did do well on the geometric test
pattern image (Fig. 14) with the constrained pair 1 “CP-1”
outperforming (and GHM with approximation) at the 8 : 1
compression ratio. When using the repeated row algorithm,
the constrained pairs significantly outperformed the GHM
symmetric multiwavelet, demonstrating the importance of the
eigenvector constraints (14) and (15). A close look at the de-
tails of the compressed/decompressed test patterns shows that
the CP-1 compression “rang” over a shorter distance than the

compression. While the (3, 5)-tap scalar wavelet produced
minimal ringing, it significantly degraded the checkerboard
pattern. The Chui–Lian multiwavelet did the best, yielding a
lossless (!) compression at 8 : 1 and beating all contenders at
all compression ratios.

These preliminary results suggest that multiwavelets are
worthy of further investigation as a technique for image com-
pression. Issues to address include the design of multiwavelets
with symmetry and higher order of approximation than the
GHM system, the role of eigenvector constraints, and also
further exploration of regularity for multiwavelets [42]. One
might also apply zerotree-coding methods [32] in a multi-
wavelet context. Other interesting results on implementation
of multiwavelets for image compression can be found in [7].

VII. CONCLUSIONS

After reviewing the recent notion of multiwavelets (matrix-
valued wavelet systems), we have examined the use of multi-
wavelets in a filterbank setting for discrete-time signal pro-
cessing. Multiwavelets offer the advantages of combining
symmetry, orthogonality, and short support, properties not
mutually achievable with scalar two-band wavelet systems.
However, multiwavelets differ from scalar wavelet systems
in requiring two or more input streams to the multiwavelet
filterbank. We described two methods (repeated row and
approximation/deapproximation) for obtaining such a vector
input stream from a 1-D signal. We developed the theory
of symmetric extension for multiwavelet filterbanks, which
matches nicely with approximation-based preprocessing. Mov-
ing on to 2-D signal processing, we described an addi-
tional algorithm for multiwavelet filtering (two rows at a
time), and developed a new family of multiwavelets (the
constrained pairs) that is well-suited to this two-row-at-a-time
filtering.

We then applied this arsenal of techniques to two ba-
sic signal processing problems, denoising via thresholding
(wavelet shrinkage) and data compression. After developing
the approach via model problems in one dimension, we applied
the various new multiwavelet approaches to the processing of
images, frequently obtaining performance superior to the com-
parable scalar wavelet transform. These results suggest that
further work in the design and application of multiwavelets to
signal and image processing is well warranted.
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