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Abstract--Generat results on microlocal analysis and tight frames in R2 are summarized. To 
perform microlocal analysis of tempered distributions, orthogonal multiwavelets, whose Fourier trans- 
forms consist of charscteristic functions of squares or sectors of annuli, are constructed in the Fourier 
domain and are shown to satisfy a multiresolution analysis with several choices of scaling functions. 
To have good localization in both the z and Fourier domains, redundant smooth tight wavelet frames, 
with frame bounds equal to one, called Parseval wavelet frames, are obtained in the Fourier domain 
by properly tapering the above characteristic functions. These nonorthogonal frame wavelets can be 
generated by twescale equations from a multiresolution analysis. A natural formulation of the prob- 
lem is by means of pseudodifferential operators. Singularities, which are added to smooth images, 
can be localized in position and direction by means of the frame coefficients of the filtered images 
computedin the Fourier domain, Using Plancherel’s theorem, the frame expansion of the filtered 
images is obtained in the I domain. Subtracting this expansion from the scarred images restores the 
original images. @ 2003 Elsevier Science Ltd. All rights reserved. 
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1. INTRODUCTION 

The concept of frames for Hilbert spaces generalizes the notion of orthonormal and Riesz bases in 
the sense that a frame X = {xi; i E I}, where I is an index set, provides a stable representation 
for signals f by means of an expansion f = Ci ci(f)zi. H owever, X need not be an orthonormal 
or independent sequence. Frames are useful for signal decomposition in cases where redundancy, 
robustness, oversampling, and irregular sampling play a role (see [1,2]). 

Nonsmooth orthonormal multiwavelets have been constructed in [3] for performing microlocal 
analysis of tempered distributions in R”. The multiwavelets, whose Fourier transforms consist 
of characteristic functions of cubes, have perfect localization in the Fourier domain but poor 
localization in the x domain. To obtain good localization in both the x and Fourier domains 
in R”, in [4], the block wavelets are smoothed by convolution and normalized to produce tight 
frames with frame bounds equal to one, called Parseval frames. In [5], nonorthogonal rectangular 
and polar smooth frame wavelets in B2 are obtained from a multiresolution analysis. 

In [S], on the one hand, it is shown that no smooth orthonormal wavelets exist in the Hardy 
space H2(rW) of L2 functions whose Fourier transforms have support on the positive real axis, 
but, on the other hand, smooth frame wavelets for H2(W) are constructed with good localization 
in both the x and Fourier domains. 

In the present paper, attention is restricted to microlocal analysis in the two-dimensional case 
with the goal of localizing the singularities of a function f in the time domain by analyzing the 
growth of f* in wedges in the Fourier domain. 

Since wedges in R2 are generalizations of the positive real axis in IFg, smooth frame wavelets 
are generalized to L2(IR2) by properly tapering the Fourier transforms of the orthonormal multi- 
wavelets given in [3]. Thus, the dyadically scaled Fourier transforms of the twelve frame wavelets 

satisfy the identity 

In a multiresolution analysis, the shifted and scaled scaling function &k(x) = 2j4(2j~r - Ic) are 
orthonormal bases of subspaces Vj. Although our smooth frame wavelets can be derived from a 
multiresolution analysis by two-scale equations, they are not orthogonal to each other, nor to the 
spaces Vj. 

The paper proceeds as follows. In Section 2, continuous and discrete Fourier transforms of 
line impulses are described. In Section 3, the concepts of microlocal analysis are reviewed. In 
Section 4, necessary and sufficient conditions are given to characterize tight frame wavelets. 
In Section 5, different pavings of the Fourier domain for microlocal analysis are presented. In 
Section 6, a multiresolution analysis is presented for wavelets with box Fourier transforms. Sec- 
tion 7 presents painless smooth tight frame wavelets. Section 8 is concerned with rings of 12 ta- 
pered frame wavelets. Section 9 presents a multiresolution analysis for smooth rectangular frame 
wavelets. Section 10 describes a general construction of microlocal frame wavelets. Section 11 
introduces a multiresolution analysis for smooth polar frames wavelets. Section 12 contains a 
numerical implementation of the localization method applied to geometric and natural images. 

The above methods fall within the concept of pseudodifferential operators, and this work could 
alternatively be considered within the context of almost orthogonal decompositions by means of 
&transforms as presented, for instance, in [7,8]. 
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2. FOURIER TRANSFORM OF LINE IMPULSES 

In view of numerical applications on domains with pixels at integer points, the continuous 
Fourier transform f^([) f f o a unction f(z) defined over R? and the inverse Fourier transform 
of f^(<) will be 

Ff(t) := f(r) = 1 e-2nic.s j(x) dx, F-‘j(x) := f(x) = / e2rriz.F f*(E) 4, (2) 

and Plancherel’s theorem will be 

(f,S) = (P2) > (3) 

where 

(f,g) = s,2 f(x)s(z)dx, (f2) = J’ f(t)i%M 
iw 

A fundamental result that is used in this work is concerned with the Fourier transform of 
parallel straight lines and parallel straight segments. The continuous Fourier transform of a line 
impulse distribution in R2 is a line impulse distribution at right angles to the original line impulse 
distribution. It is enough to show this result for a line impulse along the xi-axis. 

PROPOSITION 1. Let the tensor product of the identity function l,, and the Dirac measure 6(x2), 

be a line impulse distribution along the xi-axis. Then the Fourier transform 

is a line impulse distribution along the &-axis. The Fourier transforms of parallel line impulse 
distributions differ by the phase of their elements. 

PROOF. For t and w E W, we have i,(w) = 6(w) and i(t) = It. Hence, by the definition of the 
tensor product of distributions, the Fourier transform acts separately on each component; thus, 
we have 

&1,<2) = (L, c&2,) (GTE2) = 6(&) 8 Lfz. 

Let f(zi, x2) be a line impulse distribution along the line 52 = r; that is, 

f(m, 52) = L, @ 6(x2 - r). 

Since ~@Z)(W) = e- 2airwlw, where t,r,w E IR, we have 

The discrete Fourier transform X(/cl, kg) of a sequence x(ni, 722) and the inverse discrete Fourier 
transform of X(/cl, l~3) are 

X(kl, k2) = 5 5 x(n1,n2) e--274kl--l)(7Q--1)l~ e-wkz-l)(~z-l)l~ (4) 
nz=l n1=1 

and 

nl-1)/N e2ri(kz-l)(n~-l)/N 
(5) 



1554 R. ASHINO et al. 

A result similar to Proposition 1 holds for the discrete Fourier transform of a line impulse. 
Hereafter, we use the MATLAB colon (:) convention; that is, 1 : N means 1,2, . . . , N. 

PROPOSITION 2. Let 

4711,122) = 
{ 

1, “I= 1, “2 = 1: N, 

0, otherwise, 

be a line impulse along the first row of an N x N matrix. Then the discrete Fourier transform 

X(b, k2) = 
1, kI=l:N, k2=1, 

0, otherwise, 

is a line impulse along the first column of the matrix. The Fourier transforms of parallel line 
impulses differ by the phase of their elements. 

PROOF. A simple summation gives 

X(k1,k2) = fJ 5 2(w,n2)e 
-27ri(k1--l)(n1--1)/N e-2xi(k2-l)(nrl)/N 

nz=l n1=1 

=te -2?ri(kz-l)(nz-1)/N 

nz=l 

i 

N, kl = 1: N, k2 =l, 
= 

0, otherwise. 

Let z(nl,nz) be a line impulse along the T th row. Then 

X(k1, k2) = 5 5 X(711, n2) e 
-274k~l)(n1-1)/N e-2rri(kz-l)(nz-1)/N 

=e -2si(kl-l)(r-1)/N -2ri(kz-l)(nz-1)/N 

nz=l 

{ 

Ne_2~i(kl-‘)(~-l)/N, kl = 1 : N, k2 = 1, 
= 

0, otherwise, 

which is a modulated line impulse in the vertical direction. I 

The discrete Fourier transform of a constant segment along a row of a matrix produces an 
approximation to the cardinal sine in the kz-variable which is modulated in the kl-variable, as a 
simple computation shows. 

Let 

4wrn2) = 
{ 

1, 711 = Tl, 712 = 7-2 : T3, 

0, otherwise, 

be a segment impulse along the rlth row of an N x N matrix. Then the discrete Fourier transform 
of x is 

=e -2ni(k1-1)(7.1-1)/N 

[ 

2 e-2ri(k2-l)(nz-1)/N 

7L*=rz I7 
where the term in square brackets is an approximation to the cardinal sine. By means of the 
MATLAB f f tshif t command, the vertical peak line of X(kl, k2) passes through the center of the 
matrix. The larger that N becomes and the longer the segment becomes, the closer the surface 
will be to a modulated line impulse. 
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3. MICROLOCAL ANALYSIS 

Our smooth tight frame wavelets are intended to be used for investigating the microanalytic 
content of distributions. To motivate such constructions, in this section we summarize the expo- 
sitions found in [3,4,9]. 

Intuitively, hyperfunctions, which were introduced by Sato [lo] and extensively developed by 
the Kyoto school of mathematics, can be considered as sums of boundary values of holomor- 
phic functions defined in infinitesimal wedges. Hyperfunctions are powerful tools in several ap- 
plications: for example, vortex sheets in two-dimensional fluid dynamics are a realization of 
one-dimensional hyperfunctions. Analytic continuation in domains of special forms plays a key 
role in the theory of hyperfunctions. A simple example of a hyperfunction is the Dirac delta 
measure 6(z), which, when applied to a continuous function f(x) produces the value f(0) 

(f, a) = /, f(z) S(x) dx = f(0). 

Since, in Schwartz’s theory of distributions [ll], smooth testing functions of compact support 
cannot be holomorphic functions, Sato used Cauchy’s integral formula to define 6(z) applied to 
a holomorphic function f(z) on an open set D c Cc. Assuming that 0 E D and letting y = 8D 

denote the boundary of D, we have 

1 

5Zy Z f 
f(z) dz = f(0). 

In the limit as the path y is shifted to y+ + y-, where y+ goes from foe to -m and y_ goes 
from --00 to +CXJ along the real axis, as shown in Figure 1, this formula becomes 

1 

2ni, Z f 
“dz=J_t_m(-&) (A--&)f(x)dx. 

/ - --WT. / N 
. 

Y+ I/ 
. 

\ \ __ __~~~~~~~~~~-~--------~ __ me ___--_ 

0 
F-_-+-_-_ __--_------- Real axis 

\ / Y_ 
\ 0 

, 
\ 

. 0 
--4 

Figure 1. Shifting the path y to 7+ + 7- 

Thus, 

6(x) = -& --& - -J- 
x - io > 

is defined as the limit of two holomorphic functions, one holomorphic in the upper half-plane and 
the other holomorphic in the lower half-plane. 

We write C2 = lR% + iW$ and let r be a cone with vertex at the origin in W$. If A is an 
open set in llJ$ which approaches r asymptotically near the origin from the interior of r, then 
the subset U = llU2 + iA of C2 is called an infinitesimal wedge with opening I’, and is denoted 
by R2 + ir0 (see Figure 2). 

Let f(z) be a “generalized boundary value” of a holomorphic function in an infinitesimal 

wedge R2 + iI’0; that is, 

f(x) = liTo fb + iY>l 
YG 
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Figure 2. An infinitesimal wedge Iw* + X0. 

which, for simplicity, we write as 
f(E) = f(X + irq. 

Such a distribution can be thought of as being analytic with respect to the direction of I?. 

We are interested in the directional analyticity of a distribution [12,13]. 

DEFINITION 1. A distribution f(x) is said to be analytic with respect to a direction & if it can be 

represented as a finite sum of limits fj (Z + iI?jO) of slowly increasing holomorphic functions f., (2) 

in W2 + iI’j0 such that for every j we have 

rj n {y E Iw2; yf co < o} # td. 

To characterize the microanalyticity of a slowly increasing distribution f E S(lR2) by its Fourier 

transform f^, we introduce the dual cone, l?, of r defined by 

ro := {[ E R2; y E _> 0, for every y E r} 

(see Figure 3). If I’ is a cone in lR 2, then the dual cone I’” is a closed convex cone in R2. Moreover, 

I’” is a proper cone. The complement of r” is denoted by (l?“)“. 

Figure 3. Open cone r, dual cone I”, and complement (P)c of dual cone 

The following two lemmas are standard (see [14]). 

LEMMA 1. Let r be an open convex cone. A slowly increasing distribution f(z) E S’(iR?) can 
be represented as the limit f(~ + CO) o a slowly increasing holomorphic function f(z) in the f 

infinitesimal wedge R2 fir0 if and only if the Fourier transform f^ off is exponentially decreasing 
in the open cone (I’“)“, the complement of I’“; that is, f^ is exponentially decreasing on every 
closed proper subcone I?’ CC (I?“)“. 

The convex hull of an open cone r is denoted by col?. It can be shown that J? = (col?)“. 

LEMMA 2. (BOCHNER) . Let r be an open connected cone. Every slowly increasing holomorphic 
function in the infinitesimal wedge W2 + iI’ can be extended to a slowly increasing holomorphic 
function in the infinitesimal wedge W2 + i(co r)O. 
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Hereafter, we shall always assume that the opening r of an infinitesimal wedge is convex. The 
larger the opening I?, the more regular a slowly increasing distribution f(z + $0) will be. The 
largest opening l? is the whole space, in which case f(x + CO) is analytic. The next largest 
possible openings I? are half-spaces. 

Let a slowly increasing distribution f(s) b e analytic with respect to a direction 6. Then, by 
Definition 1, f(z) can be represented as a finite sum of limits fj(x + iI’j0) of slowly increasing 
holomorphic functions in R’+irjO such that l?jn{y E R2; y.& < 0) # 0 for each j. By Lemma 1, 
each Fourier transform f^j(E) is exponentially decreasing in the open cone (I’;)c. Since & q! I’:, 

there exists an open cone I’ containing [c such that the Fourier transform f(r) = Cfi(S) is 
exponentially decreasing in r. 

It is desirable to localize the directional decay of a function in e-space (Fourier domain), 
because local nonsmoothness of a function f in x-space corresponds to slow decay of the Fourier 
transform f^ along some directions at infinity. Each such direction corresponds to a point on the 
unit sphere Si in J-space. Therefore, we shall use the coordinates (x, <) E R2 x S1 to represent a 
point x E R2 together with a direction [ E Si. 

DEFINITION 2. A distribution f(z) E D’(lRz) is said to be analytic at x0 E W2 if there exists an 
open neighborhood V c R2 of x0 such that the restriction f Iv off on V is analytic in V. The 
set of all points x E R2 where f is not analytic is called the singular support off. 

DEFINITION 3. A distribution f (cc) is said to be microanalytic or microlocal analytic at (20, &) E 
R2 x S1 if there exists a distribution g(z) which is analytic with respect to the direction [c such 

that f(x) -d ) x is analytic in a neighborhood of xc. The set of all points (x, 0 E B2 x S1 where f 
is not microanalytic is called the singular spectrum off. 

4. NECESSARY AND SUFFICIENT CONDITIONS 
FOR TIGHT FRAME WAVELETS 

We refer to [15,16] for detailed background on frames. 

DEFINITION 4. Let I be an index set. A sequence of vectors {fi}ier in a Hilbert space H is 

called a fmme for H if there exist constants A, B > 0 (called frame bounds) such that 

v’f E H, A Ilf It2 L c I(f,fi)12 I B Ilf l12. 
iEI 

If we can take A = B, then we say that the frame is an A-tight frame. If A = 1, then the l-tight 
frame is called a Parseval frame. 

It can be shown that llfij12 5 B f or each i E I. Further, {fi}iGl is a tight frame with frame 
bound A if and onlv if 

d 

Vf E H, x(f, fi) fi = Af. 
iE1 

All frames are complete (the finite linear span is dense in H), but not all complete sets are 
frames. A frame is a basis for H if and only if it is a Riesz basis (the image of an orthonormal 
basis under a continuous, invertible mapping). A frame is overcomplete or redundant if it is 
possible to remove some element from the frame and still leave a complete set. For the case 
of tight frames, we can give the following easy characterization of redundancy. Redundancy of 
frames is explored in more detail in [17]. 

‘ 

LEMMA 3. Let {fi}iEI be an A-tight frame for a Hilbert space H. Ifj E I is such that )( fj )I2 < A, 
then {fi}+j is still a frame for H, with frame bounds A’ = A - llfj1j2, B’ = A. 

PROOF. If f E H, then clearly 

Cl(fTfi)I’ i Cl(f~fi)12 =Allfl12. 
i#j iEI 
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This establishes the upper frame bound. Also, using the Cauchy-Schwarz inequality, we have 

c IV, fiH2 = c l(fJJ12 - IV, fJ12 L A llfl12 - Hfl12 llhl12 = (A - llfjll”) llfl12, 
i#i icr 

which establishes the lower frame bound. I 

Given f E L2(W2), let fj,k(x) denote the scaled and shifted function 

fj,k(5) = 29 (2% - I;) ) jEZ, kEZ2. (6) 

Its Fourier transform is 
fj k(t) = ,-z*W2-if^ (2-Q) . (7) 

Let lL be a finite index set. A system {?,!$k}&~,jez,kez2 c L2(W2) is called an A-tight wavelet 

frame if 

we recall that a SyStem {$$k}e&,jEZ,kEa2 C L2(R2) is called an orthonormal wavelet basis if it is 
an orthonormal basis for L2(IR2). An extension of Lemma 3 shows that this is equivalent to saying 
that the system {$$k}&~,je&&zZ is a Parseval wavelet frame and (I$J’[ILz(wz) = 1 for e E IL. 

The following general theorem, which is essentially Theorem 1 as stated and proved in [18) 
for B”, gives necessary and sufficient conditions to have a Parseval wavelet frame in W2. 

THEOREM 1. If {$I’, q2,. . . , $J~} c L2(lR2), then 

for all f E L2 (R2) if and only if the functions { $J’ , ti2, , . . , @} satisfy the following two equalities: 

P-9 

C 4’ (2’E) Ge (2j([ + q)) = 0, a.e., 6 E R2, Vq E Z2 \ (2Q2, (11) 
ee& 

jez, 

where Z+ := N U (0) and q E Z2 \ (22)2 means that at least one component qj is odd. 

COROLLARY 1. Under the hypotheses of Theorem 1, any function f E L2(W2) admits the tight 
wavelet frame expansion 

f(x) = c (f&,k) $,k(+ (12) 

ea 
ia 

k& 

By using the localization property of the frame wavelet in the Fourier domain, one can study 
the directions of growth of fl(<) by looking at the size of the frame coefficients 

(f, #,k) = (.i, &c) . (13) 

Moreover, by using the localization property of the frame wavelets in x-space, one can localize 
the singular support of f(x) by varying C, j, and k in (13). 
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An alternate formulation of the problem is by means of a pseudodifferential operator 

Pf(x) = s eznit" p(x, 5) i(e) de. (14) 

The problem is to find a symbol p such that Pf is strongly localized on the singular support 
of f and negligible where f is smooth. Pseudodifferential operators with smooth symbols do not 
extend the singular support of f; that is, the singular support of Pf is contained in the singular 
support off. In Section 12, the symbol will involve only the matrix Q$ which will be a discretized 
version of G,“(e) = q2(2-‘c), and the values of the shift parameter k in the summation in (12) 
will be determined indirectly by the singular support of f through the size of 1 (f, $;,,)I. 

5. PAVING OF THE FOURIER DOMAIN 
FOR MICROtOCAL ANALYSIS 

The localization property of the frame wavelets in the Fourier domain (13) will depend upon 
the support of the wavelet functions $jVk on appropriate rectangular or polar pavings of the plane. 

Rectangular pavings of the Fourier domain in lR2 will consist of rings of 12 dyadic squares. 
Five “square” rings are shown in Figure 4 with artificially added spacing around the boxes for 
immediate visual perception. 

Q; Q; Q?' Q?' 
J J 

Figure 4. Five rings of 12 dyadic squares with four central black squares in the 
Fourier domain. 

In the case of nonsmooth orthonormal box wavelets, the zeroth ring, Rl’l, will consist of the 12 
unit squares, QA,Qa, . . . , Q,$“, immediately surrounding the four black unit squares shown in 
Figure 4. The jth ring Rlil consists of the squares Q$, L = 1,2,. . . ,12, with sides of length 2j, 
obtained by dyadic scaling. 

In the csse of smooth frame wavelets, the central square will be a unit square made up of the 
four central black squares shown in Figure 4, and the zeroth ring, ~1’1, will consist of the 12 

squares with sides of length l/2, and the squares of the jth ring will have sides of length 2j-r . 

Smaller squares will allow tapering of the scaling function and frame wavelets and still maintain 
the tightness of the frames. 

To have arbitrarily fine angular resolutions in the Fourier domain, in Section 11, it will be 
convenient to consider polar pavings of the plane by dyadic sectors of annuli with unequal angular 
divisions, as shown in Figure 5. 
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Figure 5. Dyadic sectors of annuli with central disk in the Fourier domain. Unequal 
angular divisions offer directional freedom. 

6. MULTIRESOLUTION ANALYSIS 
FOR WAVELETS WITH BOX FOURIER TRANSFORMS 

This section is primarily concerned with a two-dimensional generalization of Examples I and K 
of [6, pp. 386,390]. 

Define the classical Hardy spaces H2(IR*) by 

H2(i&) = {f E L2(R); f(E) = 0 a.e., < 5 (>)O} . 

In these examples, a scaling function 4+ and a wavelet function $J+ for orthonormal wavelets 
of H2(lR+) are defined by 

i+ = X[O,l], 4, = X[l,2]. 

From the two-scale relation 1 
24+(2E) = mo(W+W 

it is found that the corresponding lowpass filter is 

ma(E) = 2x[o,1/2](t) = 2J+w 

on [0, l), and extended l-periodically to the line. From the twoscale relation 

24+(2J) = eanit 
1 * 

mo 
( 1 

I + - 4+(5) = m(W+(E) 2 

it is found that the corresponding highpass filter is 

ml([) = e2rriEmc 
( > 

6 + i = 24+(2G 

on [0, l), and extended l-periodically to the line. 
By the same argument, we have a wavelet function $- and a scaling function d- for orthonor- 

ma1 wavelets of H2(R_). Since 

L2(lR) = H2(R+) CD H2fIR_), 

{ti+,W and id+,&_) can be regarded as multiwavelet functions and multiscaling functions, 
respectively, of L2(lR). 

For the two-dimensional case, we can take the tensor product of multiresolution analyses for 
one-dimensional multiwavelets. Then the four multiscaling functions &, $2, c,+~, d4 are defined 
by their Fourier transforms, 
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with support on the four central black unit squares, respectively, in Figure 4. To each multiscaling 

function, there correspond three multiwavelet functions. These 12 multiwavelet functions @, 
! = 1,2,. . . ,12, are 

The three families in quadrant a, Q = 1,2,3,4, can be generated by the corresponding scaling 
function c#P. 

The scaling function satisfies the identity 

/pyq~2 = 2 57 (p4+p (2Q) 12. 

j=l p=1 

In this case, since the I$” are characteristic functions of disjoint sets, we may remove the squares 
and the absolute values to get 

It follows that each d”, a = 1,2,3,4, being the characteristic function of one of the four central 
squares in Figure 4, satisfies the two-scale equation 

2&“(2C) = mo”(E)&W (15) 

with lowpass filter 

mo”(<) = 2@(2t) = E c 243(a-1)+P (2%) = 2xs,,,4q,.)(~) (16) 
j=2 p=1 

on [O, 1) x [O, l), and extended (1 x 1)-periodically to the plane. Then each wavelet y?“, P = 

3(cy - 1) +P, w h ere a = 1,2,3,4, ,/3 = 1,2,3, satisfies the two-scale equation 

2Ge(2r) = 4 (w(t) (17) 

with highpass filter 

m:(E) = 2Ge(2C) = 2X,,,,&,.)(E) (18) 

on [0, 1) x [0, l), and extended (1 x 1)-periodically to the plane. In this case, we have a genuine 
multiresolution analysis with box orthonormal scaling functions and wavelets. 

Because of the form of the two-scale equations (15) and (17), and the lowpass and highpass 
filters (16) and (18), which are the periodized characteristic functions of the supports of @(2[) 
and de(2[), respectively, a multiwavelet multiresolution analysis could be generated by a single 
scaling function consisting of the characteristic function of the central unit square made of the 
four black squares in Figure 4. 
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Similarly, one can use 12 scaling functions of the form 

i’(l) = 2 4” (2j[> 1 
j=l 

with two-scale relation 

and lowpass filter 

on [O, 1) x (0, l), and 
two-scale equation 

with highpass filter 

d(E) = 2de(%) = 5iJe (22) = 2X,“,,&(,.)(O 
j=2 

extended (1 x l)-periodically to the plane. The wavelet I$’ satisfies the 

24726) = mW%) 

on (0,l) x [0, l), and extended (1 x I)-periodically to the plane. 
In the terminology of image processing, in all cases we have infinite impulse response filters. 

7. PAINLESS SMOOTH TIGHT FRAME WAVELETS 

The argument in this section is in the spirit of the one-dimensional tight frames given in [16], 
which are themselves derived from the construction in [19]. 

Let Qc be the square [-l/2,1/2] x [-l/2,1/21 centered at the origin and consider a “square” 

ring made of the 12 squares Qr, . . . ,Qr2 with sides of length l/2 surrounding the central unit 
square Qc which is made of the four black squares shown in Figure 4. 

Let E be given such that 0 < E < l/4, and let Qe be an enlarged version of the square Qe by 
at most a band of width E along each side. For example, for Qr = [l/2, l] x [O, l/2], 

o1 = [; -E,l+E] x [-,,;+,I 
Let ge E L2(W2) be such that: 

(1) &_ is continuous, 
(2) & is supported in &e, 
(3) 61 is nonzero in the interior of &e, and 
(4) fit is identically 1 on Qt. 

Define 
12 co 

G(J) = C C lie (2-j<)]“, 
e4 j=-oo 

E E w2. (19) 

For any given point E, there are only finitely many nonzero terms in the series in equation (19). 
Since each ije is bounded, then G is bounded above. For any given point E # 0, there is at least 
one term in equation (19) such that 2-j[ lies in some Qp. Hence, G(t) 2 1 except at the origin, 
where it is zero. 

Define the functions ^ 
7&r>= J!E-, e= 1)“‘) 12. (20) 

It is clear that &e(E) is in L2(lR2). For each point [ # 0, we have 

2 2 (4’ (2-jt)lZ = 1 
e=i j=-cc 

(21) 
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since G is invariant, under dyadic scaling. Note that this remains true even when G(e) is un- 
bounded. 

For k E Z2, the functions 
ek(E) = e-2nic’k, EEW2, (22) 

form an orthonormal basis for L2([0, 1)2). The fact that &e is contained in a square with sides 
of length 1 will be used below. 

As in (6), define the functions 

$$k(~) = 2’7je (2& - k) , jEZ, kEZ2, t=l,..., 12. (23) 

Then 
$&([) = 2-j ek (2-j!$) 4” (2-jr). (24) 

Although it follows from Theorem 1 that {+j,k} g enerates a Parseval frame, we give an inde- 
pendent proof, and also show that this frame is redundant. 

THEOREM 2. The functions I+!J’, . . . , $12 defined by (20) g enerate a redundant Paxseval wavelet 
frame. 

PROOF. If Q is any unit square, then {ek; k E Z2} is an orthonormal basis for L2(Q). Hence, if S 
is a subset of a unit, square Q then {ek; k E Z2} is a Parseval frame for L2(S). If S has measure 
less than 1, then this frame for L2(S) is redundant. In particular, since ($4 is contained in a unit 
square, we therefore have by a change of variables that {2-‘ek(2-‘<); k E Z2} is a Parseval frame 
for L2(2j&e). Using this tight frame and also Plancherel’s theorem, we can therefore calculate 
that, for any f E L2(W2), we have 

Consequently, 

Thus, {~~,k}jEZ,kEZl,e=l,.,,,~2 is a Parseval wavelet frame for L2(W2). 
To show that this frame is redundant., it suffices, by Lemma 3, to show that Il@\l~aca~, < 1 

for some e. In fact, this is true for every e. For simplicity, consider ! = 1. We have 6’ supported 
within 61 = (l/2 - E, 1 + E] x [-E, l/2 + E], which is itself contained within the unit square Q = 
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[l/4,5/4] x [-l/4,3/4]. Fu th r er, by construction we have that 4’ is continuous, 0 < I@(w)/ 2 1 

for all w, and G’(w) = 0 for w E aQ. It follows directly then that (]$1](i2(Hp2) = s I@(w)\~ dw < 1, 
which completes the proof. I 

Let IL = {l,..., 12}. In fact, once we know that the frame {$J&}~~,~,~)~z~ZZ~B, is redun- 
dant, it follows from [17, Theorem 6.81 that there exists a set J of infinite cardinality such 

that {~~,~}(j,k,e)E(zx~z~~)\~ is still a frame for L2(R2). 

8. RINGS OF 12 TAPERED FRAME WAVELETS 

In this section, we construct smooth tight frame wavelets satisfying (1) identically. This fact 

accelerates computation in the construction of frames in view of the numerical implementations 
in Section 12. 

We first define bell functions of one variable. We partition the s-axis with points {aj} (aj < 
aj+r) into intervals, such that the j th interval is [aj, uj+r] and has length Li = c++~ -uj. Around 

each endpoint of an interval, say uj, we allow a tmnsition region [uj - gj, uj + Ed] of width 2~~; 

in this region, the bell function bj(s) over the interval j rises smoothly from 0 to 1, and the bell 

function bj_l(s) over the interval j - 1 decreases smoothly from 1 to 0. The bell function bj(s) 

is nonzero for s in the region (uj - &jr uj+r + sj+i) and it is 1 for s in [uj + ~j, uj+l - sj+r]. Bell 

functions over two adjacent intervals overlap in the transition region. 

A bell function, or window, bj(s) has the following properties: 

(i) 0 5 bj(s) 5 1 for all s and 

bj(s) = 
1, ifaj+Ej_<s<uj+r--sEj+i, 

0, if s 5 U3 - Ej or S 2 Uj+l + Ej+l, 

where ej > 0 and &j + Ej+r 5 Lj ; 

(ii) bj2(uj + s) + bj”(uj - s) = 1 if Js] 5 sj; 

(iii) bj(aj + S) = bj-i(uj - S) if 1st 5 Ej. 

We notice that Condition (i) says that the windows are simply smoothed versions of the 

rectangular window and bj can be specified if it is known in the left transition region LTR = 

[uj - &j, uj + .sj] and th e right transition region RTR = [ a j +r - ~j+r, uj+r + ~j+r]. So we need 

only consider the window function in the transition regions; we refer to this as a taper function. 

We shall denote the restrictions of bi on LTR and RTR by 

tl(s; cj) = bj(s), for S E [Uj -Ej,Uj f&j], (25) 

and 

t,(s; cj) = bj(s), for s E [a~+1 - &j+l7 aj+l + Ej+l], (26) 

respectively. 

The left part of Figure 6 shows three tapered characteristic functions: 

(a) of the interval [0, l] with transition width l/2 at both ends, 

(b) of the interval [l, 2] with transition widths l/2 at the left end and 1 at the right end, and 

(c) of the interval [2,4] with transition widths 1 at the left end and 2 at the right end. 

It is seen in the right part of Figure 6 that the square root of the sum of the squares of these 
three functions is equal to 1 over the overlapping tapered parts. 

-1 0 1 2 3 4 5 6 -1 0 1 2 3 4 5 6 

Figure 6. Left: three overlapping tapered characteristic functions. Right: square 
root of sum of squares of the three functions. 
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Bell functions of two variables are defined as the tensor product of two bell functions of one 
variable, 

b(Sl,S2) = h(s1)bz(sz), 

where bi and b2 have transition regions of appropriate lengths at their left and right ends. The 
tapered characteristic functions of the 12 squares of side l/2 of the ring Rl’l, shown in Figure 7, 
have transition widths 4s on the outside edges and 2s on all the other edges. Similarly, the three 
squares of side 1 of the second ring Rlil in the first quadrant, produced by dilation by 2, have 
transition widths 8s on the four outside edges and 4~ on the remaining edges. 

Figure 7. Twelve squares with sides of length l/2 forming ring ~[el, and, in the first 
quadrant, three squares with sides of length 1 of ring R[‘], and one square with sides 
of length 2 of ring R121. 

In general, the ring ~91, parameterized by j E Z, is the support of tapered characteristic 
functions 

$([) := 4” (2Q) , e=1,2 ,..., 12, 

where the Fourier transform is defined by (2). For fixed j, the only rings that intersect with ~91 
are Rli-ll and Rli+‘l. Given one ring 7&l, the other rings are simply obtained by dilation. 

To prove identity (l), one needs only check points where two, three, and four tapered wavelet 
frame functions overlap. Let us check identity (1) t a an arbitrary point [ in the intersection of 
the four tapered parts of 41 and di, e = 1,2,3. Since tapering is of the same width for all four 
transition regions, it is obtained by the same taper functions (25) and (26), tl(s,s) and &(s,E), 
respectively. Proceeding counterclockwise from the top right corner of the frame @, we have 

We generalize to two dimensions the treatment of smooth frames for H2(lR) given in Section 8.4 
of [6] and show that the $$ form a Parseval wavelet frame for L2(W2). 

THEOREM 3. If 0 < E 5 l/4, the system {$;‘,,}, j E Z, and k E iZ2, is a Parseval wavelet frame 
for LqP). 

PROOF. Identity (1) has just been proved. For f E L2(W2), a similar argument to the proof of 
Theorem 2 imnlies 
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A “folding argument” (6, p. 4191 shows that 

Thus, we have a family of frames in L2(lR2) that do not form an orthonormal basis. 

A finer angular localization in the Fourier domain is achieved by rings of 48 wavelet frame 

functions by dividing each of the previous 12 squares into four squares as shown in the left part 

of Figure 8. These functions are tapered and have transition widths 4s on the outside edges 
and 2~ on all the other edges. It is easy to see that identity (1) is satisfied. 

Figure 8. Left: One ring of 48 wavelet frame functions in the Fourier domain. Right: 
Two rings of eight wavelet frame functions in the Fourier domain. 

Similarly, a coarser angular localization is achieved by rings of eight wavelet frame functions 
supported on rings of eight rectangles. Two such rings are shown in the right part of Figure 8 

(see [20, p. 3091). 

9. MULTIRESOLUTION ANALYSIS 
FOR SMOOTH RECTANGULAR FRAME WAVELETS 

We construct an orthonormal scaling function for our tapered rectangular frame wavelets. The 

smooth wavelets are obtained from the scaling function by a two-scale equation. However, the 
(1 x 1)-periodic highpass filter will not be continuous over the basic unit square. 

We recall that a multiresolution analysis consists of a sequence of closed subspaces (V,}jGz 

of L2(llU2) satisfying the five requirements: 

(if; 
(iii) 

(iv) 
(v) 

Let 

vj c vj+1, for all j E Z; 
f(.) E Vj if and only if f(2.) E Vj+l, for all j E Z; 

njezvj = 101; 
ujez Vj = .P(llP); 
there exists a function 4 E Vo such that {d(. - .k)}kez~ is an orthonormal basis for Vo. 

b, be a tapered characteristic function of the unit interval [-l/2,1/2] with transition 
regions of length 2~. We take for the scaling function the tapered characteristic function of the 
unit square with center at the origin, 

&5,E2) = be(W,(Ez) (27) 

and transition regions of width 2~. Then we have the following Theorem 4. 
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THEOREM 4. The tapered rectangular frame wavelet system defined in Section 8 is obtained 

from a multiresolution analysis of L2(W2). 

To prove Theorem 4, we shall use the following two lemmas. 

LEMMA 4. The smooth scaling function defined by (27) is an orthonormal scaling function. 

PROOF. We show first that the function 4, defined by (27), is a scaling function for a multireso- 
lution analysis if it satisfies the three conditions 

(a) CkEZz l&E + k)12 = 1, a.e., E E [O, 1)2, 
(b) limj,ra 1$(2-j[)[ = 1, a.e., ,$ E R2, and 
(c) there exists a (1 x 1)-periodic function mo such that 

. * 
2$(20 = mo(EM(E)1 a.e., 6 E R2. (28) 

Condition (a) is equivalent to the fact that the system {+(. - k)}kezz is orthonormal. If we 
define 

Vo := Span{d(. - k)jkEZ2, 

then requirement (v) is satisfied. If we define 

I$ := Span {2jf$ (2j . -k)},,,, , 

then requirement (ii) is satisfied. Condition (c) implies requirement (i). Since $J has compact 
support, we can assume that supp$ c {E; It/ < R} f or a positive R. For a function f E Vj, there 

exists a function mf(J) E L2([0, 1)2) such that 

f*(e) = rnf (2-Q) 4 (2-Q) . 

This equality implies that 

SUPP~^(~ c SUPP$ (23) c {E; IEI < @R}. 
Hence, f E n,,, Vj implies that 

SUPP.&) c n {C IEI < 2’R) = (01. 
jEZ 

Thus, we have f = 0, a.e. t E W2, which is requirement (iii). 
To establish requirement (iv), it suffices to show that f E FF-1[C~(W2)] is approximated by an 

element of UjEz Vj. Denote by Pi the orthogonal projection from L2(R2) to Vj. Then it suffices 
to show that 

Ilpjf - f II2 = Ilf II2 - llpjf II2 + 0, f E F-l [cr (R2)] 7 

as j -+ co. For f E 3-‘[C,““(R2)], th ere exists J E N such that supp p(2J[) C [-l/2, 1/212. 
Thus, 

llPjfl12 = c J(f&J (2j . +I2 
k&P 

2 

= 

c IJ 

f (x)2j4(2jz - k) dx 
k# ‘= 
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Since I&<)] 5 1 by (a), Lebesgue’s dominated convergence theorem can be applied. Thus, 
(b) implies that 

;& lif^(.)zPj/;a(R’) = Ilf’il;,,,,, = llfll~z(W2). 

The function i(c) satisfies identity (a) because of the consistent tapering of the characteristic 
function of the unit square Q = [-l/2,1/2] x [-l/2 x l/2]. 

Since C$ is continuous and J(t) z 1 m a neighborhood of the origin, we have 

for every < E W2, and this implies (b). 
Since the function &2+) is supported on the square 

the lowpass filter mo, defined by 

and extended (1 x 1)-periodically, is a smooth periodic function. It follows that the Fourier 
transform of the scaling function C$ satisfies the two-scale equation (28). I 

LEMMA 5. There exist discontinuous (1 x 1)-periodic functions m:, C = 1,2, . . . ,12, such that 
the tapered rectangular frame wavelets defined in Section 8 satisfy the two-scale equations 

24720 = m:(C)&), a.e., [ E !R2, e = I, 2,. . . ,12. (29) 

PROOF. By symmetry, we need only consider two wavelets, namely @(t) and q’(E), since the 
other wavelets are obtained by left-right and up-down reflections. The wavelet d’(r) satisfies the 
two-scale equation 

24’(2E) = 4 (G&0, 

where the highpass filter, m:(t), is defined as follows. 
On the rectangle 

where 4 is equal to 

On the rectangular 

R;= a-+<;-E, -;,,,<d+; , { > 
1, define 

m:(E) = 2420, [CR:. 

transition region 

;-E&+E, ;g2+; , 
> 

where the taperings of d(E) and @(2[) coincide, define 

m:(6) = 2, E E R;. 

On the lower-right little rectangle 
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where 

4th) E2) = b(E1; E) 

and 

define 

7!Q2rr, 262) = G(6; EP6 (Ez; ;> , 

m:(El,E2) = 2t6 (E2; 3 , E E R:. 

Similarly, on the upper-right little rectangle 

where 

and 

b(C1, <2) = b(E1; E) 

define 

74LE2) = % ((2; f) 9 t E R;. 

The wavelet I+?-(<) satisfies the two-scale equation 

2G2(2<) = 4E)&), 

where the highpass filter, m:(E), is defined as follows. 
On the square 

R;= ;-;&-E, ;-;5(24-~ 
1 > 

, 

where $ is equal to 1, define 

m:(t) = 24(2E), (E Rf. 

On the union of the two rectangular transition regions 

1 1 1 & 
--ES&<-+E, -+-<~2~---E 
2 2 42- 2 

1 
s- 

where the taperings of J(t) and G2(2[) coincide, define 

On the lower-right little rectangle 

where 

and 

d&,52) = b(JliE) 

4(251,2~2) = h(tl; +6 (<2; ;) , 
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define 

m;(E&) = 2tl (CZ; 5) , 

Similarly, on the upper-right little square, 

E E R:. 

where 

define 

Hence, one sees that in all cases 

m:(E)=Z$% c=1,2 ,...) 12, 

over the support of Ge(2.) and zero elsewhere in the unit square. I 

PROOF OF THEOREM 4. The frames in Section 8 are Parseval wavelet frames. Lemmas 4 and 5 
show that the {Icle}eeL are obtained from a multiresolution analysis. I 

10. GENERAL CONSTRUCTION 
OF MICROLOCAL FRAME WAVELETS 

The construction of smooth rectangular frame wavelets in the Fourier domain can be generalized 
to functions f* supported on a general ring of sets surrounding the origin and whose dyadic 
dilations cover R2 \{ 0). Th ere is a ring, each function of which has support in a square with sides of 
length 1, so that a shift by 1 in any direction will result in nonoverlap with the unshifted function, 
and hence, equality (11) is satisfied. Thus, we obtain a tight wavelet frame by Theorem 1. 
Moreover, if equality (10) holds, the frame bound is equal to 1. But, in this case, the same result 
can be simply obtained by considering an orthonormal basis 

of a square with sides of length 1 and applying Plancherel’s theorem. This simpler argument was 
used in Section 9 on painless smooth tight frame wavelets. 

Given functions G”(r) as described above, define the real, nonnegative function J(E) by the 
identity 

The function J(E) with support in the region inside this ring is a scaling function with lowpass 
filter mc(<) = 2&2E) extended p eriodically. The highpass filter me([) is the function 

24e(2t) 
me(E) = xI 

restricted to the support of Ge(2[) and extended periodically. The definition of me(<) is justified 
by the facts that 

suPP 4726) c suPP J(E) 

and d(t) does not vanish on the support of Ge(2[), under the additional assumption that Ge(25) 
goes to zero at the same rate as d(E) goes to zero as [ goes to the same boundary point. If 
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the support of $(2t) is strictly inside the support of J(t), there is no need for this additional 
assumption. Explicitly, for a function f(E), denote by Z(f) the zeros of f; that is, 

Define 

Since, by the definition of J(t), 

the equality * 
2@(2E) = me(EM(E) 

holds even when < E Z(J). Th’ IS is true independently of the value of me(<) for [ E Z(J). The 
filters may not be continuous. 

In the specific constructions of tight frames presented in this paper, the additional assumption 
holds and specific formulae for the lowpass and highpass filters are given. 

11. MULTIRESOLUTION ANALYSIS 
FOR SMOOTH POLAR FRAME WAVELETS 

Polar rings offer an arbitrary number of angular resolutions. A few sectors of annuli of the first 
and second dyadic rings are shown in Figure 5. 

It is to be noticed that the radial interval is of the form [T, 2r]. Polar wavelets are defined by their 
Fourier transforms as characteristic functions over sectors of annuli. If the plane is completely 
covered by L nonoverlapping wedges, the L family of wavelets {$&}, with ! = 1,. . . , L, j E Z, 
and k E Z?, form an orthonormal basis of L2(W2). This basis is generated by a multiresolution 
analysis with scaling functions defined as in the case of box wavelets. 

To have better localization in x-space, these functions are tapered &ith width 2s on the inside 
arcs, width 4~ on the outside arcs, and width ES, r < s 5 2r, on the straight edges. Provided E is 
sufficiently small so that tapering overlaps are restricted to immediately adjacent regions, it will 
be shown below that identity (1) is satisfied. By taking a ring sufficiently close to the origin, by 
construction, polar rings form a Parseval frame. 

The description of polar frame wavelets is considerably simplified by using the polar coordi- 
nates (r, 0) as rectangular coordinates in the Fourier domain instead of the Cartesian coordi- 
nates ([I, (2). The inverse and direct transformations are 

& = r cos 27r6, &3 = r sin 27~3, 

with the appropriate branches of arctan. In the (r, 6’)-plane, the polar frame wavelets are sup- 
ported in the semi-infinite strip 

O<r<oo, OlOll, 

l-periodic in 0. The strip, shown in Figure 9, is divided into rectangles with vertical sides 
at r = 2j, j E Z, and horizontal sides at 

0 = e. < e1 < . . . < Be -c . . . -c eL = 1. 
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8 

8,= 
e L-l 

8 1+1 

ef 
8, 
eo= r 

Figure 9. Strip in the (T, @-plane. 

The smooth functions 
$(T, e> = ?j” (2-G, e) 

are easily obtained by tapering the characteristic functions of each rectangle. Tapering is done 
along vertical sides with transition regions of width 2j+‘s at T = 2j-l and along horizontal sides 
with transition regions of width 2&e with EL = ~0 at 0 = 0~. It is then clear that identity (1) is 
satisfied. 

The smooth frame wavelets of any horizontal strip can be obtained from a multiresolution 
analysis. The smooth scaling function &T, 0) is the tapered characteristic function 

~~~~~~~~~~~~~~~~~~~~ 

with transition region of width 2s along the vertical segment T = l/2. This function corresponds 
to the tapered characteristic function of the disk centered at the origin with radius l/2 in the 
&space. This scaling function satisfies the identity 

and the two-scale equation 
2&2r, 0) = mo(r, e)&r,e), (31) 

where the lowpass filter is defined as follows. Since the function $(2~,0) is supported on the 

rectangle 

the lowpass filter mc, defined by 

mob 0) = 
2&27-, e), on S, 
0, onQ\Q, 

and extended (1 x l)-periodically, is a smooth periodic function. It follows that the Fourier 
transform of the scaling function 4 satisfies the two-scale equation (31). 

We need only consider one wavelet, namely @(r,e), since the other cases are similar. The 
wavelet @(r, 0) satisfies the two-scale equation 

2@(2r, e) = +-, e&7-, e), 

where the highpass filter, rnq (T, Q), is defined as follows. 
On the rectangle 

(32) 
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where 4 is equal to 1, define 

n&r, 4) = 24(2r, e>, (r,e) E Rf. 

On the rectangular transition region 

R;= f- 
{ 

.s<r<i+E, Be+EeIBIBe+i-se+1 , 
> 

where the tapering of C&T-, 13) and Ge(2r, 0) coincide, define 

m; (T, e) = 2, 

On the lower-right little rectangle 

(r,e) E R;. 

where 

&-, 0) = r,(r; 4 

and 

define 

7Je(27-, 0) = k(r; s)tl(& Ee), 

m:(r, 0) = 2tl(&se), (r,e) E R;. 

Similarly, on the upper-right little rectangle, 

where 

{ 

1 1 
Ri= ---EjrL-+E, Be+l-&e+l~eIBe+l+&e+l 

2 2 

and 

&, 0) = t,(r; s) 

define 

Ge(r, 0) = t,(r,+,(e; se+i), 

&(r, 6) = x.(6 Ee+i), (T, e) E R;. 

One sees that in all cases 

m:(T,e)= ‘$((‘;T, e=1,2 ,..., L, 
r, 

over the support of Ge(2r, 0) and zero elsewhere in a square of sides of length 1. 

12. A NUMERICAL IMPLEMENTATION 
OF THE LOCALIZATION METHOD 

1573 

In this section, we apply the above theory to the restoration of finite images represented by 
matrices. Since the Fourier transform of a finite region gives rise to oscillations of the cardinal 
sine type, care must be taken in the restoration process. 

The restoration process involves the following steps. 

(a) A scarred image (a) is to be restored as its original image (f). 
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(b) 

Cc) 

Cd) 

(e) 

w 
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Image (a) is Fourier transformed and filtered by multiplication with tapered characteristic 
functions with support far from the origin and at right angles to the singularities to be 
localized. This produces image (b). 
The frame coefficients (13) in the Fourier domain, 

make image (c). 
In view of the Plancherel theorem, image (c) is used in the z domain to obtain the wavelet 
frame expansion (12) of Corollary 1. This produces a thick image (d) of the singularities 
in image (a). 
The extra width of (d), caused by the side lobes in the support of $~,j,~, is narrowed to 
eliminate oscillations due to the cardinal sine effect when transforming functions with 
finite support. This is image (e). 
A tuned multiple of (e) is subtracted from (a) to restore the original image (f). 

Two-dimensional bell functions were produced by the Mathematics Wavelet Explorer by taper- 
ing characteristic functions over the unit square with transition widths l/8 and l/4 as appropriate 
to form the first ring of 12 functions. Tapering was done by iterating the sine function twice to 

get 
b(s) = sin (f sin2 (5 sin2 (5 s))) 

with the option Taper -> {Trig121 ,epsilon). It is easy to see that 

b(s)2 + b(1 - s)~ = 1, s E [O, II, 

by noting that sin((n/2)(1 -s)) = cos((n/2) ) s an re ea e use of the identity cos2 s = 1 -sin2 s. d p t d 
Six larger rings were produced by scaling the functions of the first ring. A tapered scaling 

function is produced from the characteristic function of the central square with sides of length 2 
with transition width l/8. The support of these functions is a square with center at the origin 
and sides of length 287. 

These functions are evaluated in the form of tables by Mathematics and exported to MATLAB 
in the form of matrices 

Qo, Q:, . . , Q:“, . . . , Q:, . . , Q:“. 

By construction, the 87 x 87 matrix Q$ has lower left and upper right elements in positions 
(87,201) and (1,287). In the sequel, we shall, therefore, work with matrices of dimension 287x287. 

A barely visible straight segment along the diagonal S = [(80,80), (110, llO)] of a 287 x 287 
matrix is added to the 256 x 256 matrix of the central Barbara image (a) shown in the top left 
part of Figure 10. 

Let f be the matrix representing image (a). The discrete Fourier transform F of f is filtered 
by means of the top right frame, Q”,, of the seventh ring to recover the singularity and eliminate 
the smooth part of the image. We write Ic = (Ici,Icz). Let the (m,n)th element of the matrix of 
exponentials Eh be 

Ek(m, n) = e -2rri(m-1,~l).(kl,k2)/287 (33) 

Discretizing the scalar product (13), 

(I$)? 

we obtain the matrix C = (ck) of frame coefficients 

287 
Ck = c (&%&.*Q$) (m, n), 

m,n=l 
kl = k2 = 1,. . ,287, (34) 
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Figure 10. Top left: Image (a) of woman with scar. Top right: Image (b) of fil- 
tered Fourier transform of (a). Center left: Framed negative image (c) of frame 
coefficients (34) of (b). Center right: Framed negative dominantly five-pixel-thick 
image (d) of frame expansion of the inverse Fourier transform of (b). Bottom left: 
Framed negative image (e) of (d) thinned to one-pixel width. Bottom right: Restored 
image (f). 
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Figure 11. Top left: Image (a) of boy with grid. Top right: Image (b) of filtered 
Fourier transform of (a). Center left: Framed negative image (c) of frame coeffi- 
cients (34) of (b). Center right: Framed negative five-pixel-thick image (d) of frame 
expansion of the inverse Fourier transform of (b). Bottom left: F’ramed negative 
image (e) of (d) thinned to one-pixel width. Bottom right: Restored image (f). 
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Figure 12. Top left: Framed negative image of diagonal line impulse with random 
noise of the same height as the line. Top right: Framed negative image of the frame 
coefficients of the filtered image in the Fourier domain. Bottom left and right: Framed 
negative image of the frame reconstruction of the filtered image in the Fourier and z 
domains, respectively. 

where .* denotes componentwise matrix multiplication. Note that Q: is a real matrix. The 
matrix C represents image (c). The plot of the absolute value of the entries of C shown in the 
center left part of Figure 10 clearly indicates the dominance of the location of the singularity of 
the image (a). 

Discretizing the partial sum (12), 

we obtain the matrix W = (wk) of the wavelet frame expansion of the discrete inverse Fourier 
transform of the filtered image (b). The entries of W are 

t”k = 

where summation is over the diagonal segment S. The matrix W represents image (d), shown in 
the center right part of Figure 10. 
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Since the Fourier transform of the smooth component of the image is localized mainly near the 
origin and the Fourier transform of the singularity consists mainly of details with high frequency, 
the properly modulated matrix filter Q”, picks up only the singularity. The use of the filter Qt 
or both filters produces essentially the same results. 

Another example consists of applying the theory developed above to remove a zigzag grid which 
is added to the boy image. The top left part of Figure 11 shows the boy image (a) behind a 
grid. The Fourier transform of (a) is filtered by two 87 x 87 tapered characteristic functions in 
the top left and top right corners of a 287 x 287 matrix in the Fourier domain at right angles 
to the singularities to produce image (b) in the top right part of the figure. The center left part 
of the figure is image (c) of the absolute values of the frame coefficients in the Fourier domain. 
The center right part of the figure is the frame expansion (d) of image (b) in the CC domain. This 
frame expansion of the filtered image consists of a five-pixel-wide grid due to the finite size of 
the image and the width of the support of the frame wavelet functions in the x domain. This 
grid is thinned to the one-pixel-thick image (e) shown in the lower left part of the figure. Then 
a multiple of (e) is subtracted from (a) to produce the restored image (f) in the lower right part 
of the figure. 

The frame $,,(E), with support in the top right corner in the Fourier domain, picks up the 

singularities across segments parallel to the main diagonal. The frame I,?:,,([), with support in 
the top left corner in the Fourier domain, picks up the singularities across segments parallel to 
the secondary diagonal. 

The final example uses a polar frame. In the top left part of Figure 12, a random noise of 
height 1 has been added to a diagonal line of height 1. The Fourier transform of this image is 
filtered by a smooth polar frame supported on a sector of an annulus of aperture of 0.02~ radians 
and inner and outer radii 220 and 287, along the secondary diagonal in the upper right corner 
of a 287 x 287 matrix in the Fourier domain. The image of the frame coefficients of the filtered 
image is shown in the top right part of the figure. The bottom left and right parts of the figure 
show the frame expansion of the filtered image in the Fourier and 2 domains, respectively. It is 

1. 

2. 

3. 

4. 

5. 

6. 
7. 

8. 

9. 

10. 
11. 
12. 
13. 
14. 

that there is a significant reduction in the noise. 
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