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Summary. This chapter is an introduction to an open conjecture in time-frequency
analysis on the linear independence of a finite set of time-frequency shifts of a given
L? function. Background and motivation for the conjecture are provided in the form
of a survey of related ideas, results, and open problems in frames, Gabor systems, and
other aspects of time-frequency analysis, especially those related to independence.
The partial results that are known to hold for the conjecture are also presented and
discussed.

9.1 Introduction

In 1987, John Benedetto introduced two of his young graduate students, David
Walnut and myself, to a new mathematical research group that had been
formed at the MITRE Corporation in McLean, Virginia. Later, as a postdoc
at MIT, I met Jay Ramanathan' and Pankaj Topiwala,? then members of
the main MITRE math research group in Bedford, Massachusetts. We began
working together on problems in time-frequency analysis and wavelets. One
direction followed a beautiful insight of Ramanathan’s, applying Gabor frame
expansions to derive boundedness and spectral results for pseudodifferential
operators [70]. In another direction, we explored the basic structure of Gabor
frames, which ultimately led us to make the following conjecture (sometimes
called today the HRT Conjecture, the Linear Independence Conjecture for
Time-Frequency Shifts, or the Zero Divisor Conjecture for the Heisenberg
Group).

Conjecture 9.1. If g € L?(R) is nonzero and {(ay, Bx) }i_, is any set of finitely
many distinct points in R?, then {e2™#x®g(z — ay)}Y_, is a linearly indepen-
dent set of functions in L*(R).

!Currently: Professor, Eastern Michigan University, Ypsilanti, Michigan 48197.
Email: ramanath@emunix.emich.edu

2Currently: Founder, FastVDO LLC, 7150 Riverwood Drive, Columbia, Mary-
land 21046. Email: pnt@fastvdo.com
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Despite the striking simplicity of the statement of this conjecture, it re-
mains open today in the generality stated. This chapter provides some back-
ground and motivation for the conjecture in the form of a survey of related
ideas, results, and open problems in frames, Gabor systems, and other aspects
of time-frequency analysis, especially those related to independence. After a
brief statement in Section 9.2 of some of the partial results that are known
concerning the conjecture, Section 9.3 discusses some of the subtleties involved
in the seemingly simple concepts of spanning and independence when dealing
with infinite-dimensional spaces. In particular, this motivates the definition
of frames. In Section 9.4 we specialize to the case of Gabor frames, whose
elements consist of time-frequency shifts of a given function. We survey some
topics in Gabor theory, including other open problems related to the Balian—
Low Theorem and to Nyquist-type density phenomena for Gabor systems.
The reader whose primary interest is the HRT Conjecture can skim or skip
the surveys in Sections 9.3 and 9.4 and turn directly to Section 9.5, which
discusses some of the partial results that have been obtained, and some of the
ideas behind their proofs.

Throughout, the discussion is intended to be accessible to graduate stu-
dents who have a little background in real and functional analysis and some
familiarity with Hilbert spaces, especially L?(R) and L?[0,1]. A summary of
basic theorems from functional analysis can be found in the first chapter of
[64]. Extensive references are given throughout, both to research papers and
to textbooks or survey articles. The choice of references is usually made based
more on their utility as background or additional reading than for historical
completeness.

9.2 Statement of Partial Results

Despite attacks by a number of groups, the only published papers specifically
about the HRT Conjecture appear to be [69], [96], and [88].3 These will be
quickly summarized now, with more details presented in Section 9.5.

The HRT Conjecture was first made in the paper [69], and some partial
results were obtained there, including the following.

(a) If a nonzero g € L*(R) is compactly supported, or just supported on a
half-line, then the independence conclusion holds for any value of N.

(b) If g(x) = p(x) e=*" where p is a nonzero polynomial, then the indepen-
dence conclusion holds for any value of .

(c) The independence conclusion holds for any nonzero g € L?(R) if N < 3.

3A recent preprint by Radu Balan, “A noncommutative Wiener lemma and a
faithful tracial state on Banach algebras of time-frequency shift operators,” contains
some new partial results.
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(d) If the independence conclusion holds for a particular g € L?(R) and a
particular choice of points {(ay, Bk)}i_,, then there exists an € > 0 such
that it also holds for any h satisfying ||g — h||2 < €, using the same set of
points.

(e) If the independence conclusion holds for one particular g € L?(R) and
particular choice of points {(ay, Bk)}i_;, then there exists an € > 0 such
that it also holds for that g and any set of N points in R? within € of the
original ones.

It is perhaps surprising that there are almost no partial results formulated
in terms of smoothness or decay conditions on g. In particular, Conjecture 1
is open even if we impose the extra hypothesis that ¢ lies in the Schwartz
class S(R).

The next partial advance was made by Linnell in [96]. He used C*-algebra
techniques to prove that if the points {(a, B) 2, are a subset of some trans-
late of a full-rank lattice in R2, then the independence conclusion holds for
any nonzero g (such a lattice has the form A(Z?) where A is an invertible
matrix). Any three points in the plane always lie on a translate of some lat-
tice, so this recovers and extends the partial result (b) above. However, four
arbitrary points need not be contained in a translate of a lattice. Indeed, the
case N = 4 of the conjecture is still open, and even the following special cases
seem to be open.

Congecture 9.2. If g € L*(R) is nonzero, then each of the following is a linearly
independent set of functions in L?(R):

(a) {g(x), g(z — 1), e>™@g(x), 2™V g(z — /2)},
(b) {g(x), g(z — 1), 2™ g(z), g(x — m)}.

Conjecture 9.2 remains open even if we impose the condition that g be
continuous (or smoother). Recently Rzeszotnik has settled a different specific
four-point case, showing that {g(z), g(x — 1), e*™@g(z), g(z — V2)} is always
linearly independent [106].

Finally, Kutyniok considered a generalized conjecture in [88], replacing the
real line R by a locally compact Abelian group. Although the conjecture then
becomes even more difficult to address, she was able to obtain some partial
results. As we will mention later, even the seemingly trivial action of replacing
R by R” results in complications.

9.3 Spanning, Independence, Frames, and Redundancy

One motivation for the HRT Conjecture comes from looking at frames, which
are possibly redundant or overcomplete collections of vectors in a Hilbert
space which nonetheless provide basis-like representations of vectors in the
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space. Thus a frame “spans” the space in some sense, even though it may
be “dependent.” However, in infinite dimensions there are many shades of
gray to the meanings of “spanning” and “independence.” Some of the most
important frames are “dependent” taken as a whole even though they have
the property that every finite subset is linearly independent. One motivation
for the HRT Conjecture is the question of whether the special class of Gabor
frames (defined in Section 9.4) have this property.

In this section we provide some background on frames and the nuances
of spanning and independence in infinite dimensions. For simplicity, the dis-
cussion will be kept to the setting of Banach spaces. Some of the definitions
and discussion can be generalized easily to other settings, but other parts,
especially the discussion of frames and their properties, are more explicitly
Hilbert space theories, and there are subtleties in attempting to generalize
those results beyond the Hilbert space setting.

We will state many facts but prove few of them; proofs and additional
information can be found in the references provided in each section.

9.3.1 Spanning and Independence in Finite Dimensions

Spanning and independence are clear in finite dimensions. A set {f1,..., fam}
of M vectors in an IN-dimensional vector space H spans H if for each vector
f € H there exist scalars ¢; (not necessarily unique) such that f = ¢ f1 +
-+« + cprfar- This can only happen if M > N.

On the other hand, {f1,..., fam} is linearly independent if whenever a
vector f € H can be written as f = ¢1f1 + -+ + cyfar, it can only be so
written in one way, i.e., the scalars ¢; are unique if they exist at all. This can
only happen if M < N.

When both of these happen simultaneously, we have a basis. In this case
every f € H can be written as f = ¢y f1 + -+ + car far for a unique choice of
scalars ¢;. This can only happen if M = N.

9.3.2 Spanning in Infinite Dimensions

For proofs, examples, and more information on bases, convergence of series,
and related issues in normed spaces that are discussed in this section, we
suggest the references [28], [64], [93], [98], [108], [114].

In a completely arbitrary vector space we can only define finite sums of
vectors, because to define an infinite series we need a notion of convergence,
and this requires a norm or metric or at least a topology. Thus, we define the
finite linear span of a collection of vectors { fo fac.s to be

N

span({fa}aeJ) = {Z Cifa, : NEN, ;€ C,q; € J}.

i=1
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We say that {fa}acs spans V if the finite span is all of V, i.e., every vector
in V equals some finite linear combination of the f,. We say that {fs}acs
is a Hamel basis if it both spans and is finitely linearly independent, or,
equivalently, if every nonzero vector f € V can be written f = Zi\il Cifa, for
a unique choice of indices {a; } Y., and nonzero scalars {¢; } ;. For most vector
spaces, Hamel bases are only known to exist because of the Axiom of Choice;
in fact, the statement “Every vector space has a Hamel basis” is equivalent
to the Axiom of Choice. Although Hamel bases are sometimes just called
“bases,” this is potentially confusing because if V' is a normed space, then the
word basis is usually reserved for something different (see Definition 9.3).

As soon as we impose a little more structure on our vector space, we can
often construct systems which are much more convenient than Hamel bases.
For example, in a Banach space we have a norm, and hence can form “infinite
linear combinations” by using infinite series. In particular, given a collection
{fi}ien indexed by the natural numbers and given scalars {c; };cn, we say the
series f = Y .0, ¢; f; converges and equals f if ||f—Zfi1 cifill = 0as N — oo.
Note that order in this series is important; if we change the order of indices
we are not guaranteed that the series will still converge. If the convergence
does not depend on the order it is called unconditional convergence, otherwise
it is conditional convergence.

A related but distinct consequence of the fact that we have a norm is that
we can form the closure of the finite linear span by constructing the set of
all possible limits of finite linear combinations. This set is called the closed
span, and is denoted Span({fi}ien). Given f € span({fi}ien), by definition
there exist vectors gy € span({ fl-}ieN) which converge to f. However, this is
not the same as forming infinite linear combinations. While each gy is some
finite linear combination of the f;, it need not be true that we can write
gN = Zi\;l cifi using a single sequence of scalars {¢; }ien.

Using these notions, we can form several variations on “spanning sets.”

Definition 9.3. Let {f:}ien be a countable sequence of vectors in a Banach
space X .

(a) {fitien is complete (or total or fundamental) if span({fi}ien) = X,
i.e., for each f € X and each N € N there exist scalars {cn,i(f)}ien
such that Zi\il eni(f) fi = f as N — oo.

(b) {fi}ien has Property S if for each f € X there exist scalars {c;(f)}ien
such that -
F=Salhi (9.1)

i=1

(¢) {fi}ien is a quasibasis if it has Property S and for each i € N the mapping
f = ci(f) is linear and continuous (and hence defines an element of the
dual space X*).
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(d) {fitien is a basis or Schauder basis if it has Property S and for each
f € X the scalars {ci(f)}ien are unique.

Completeness is a weak property. The definition says that there are fi-
nite linear combinations of the f; that converge to f, but the scalars needed
can change completely as the length N of the linear combination increases.
On the other hand, unlike the other properties there exists a nice, simple
characterization of complete sequences. For the case of a Hilbert space it is:

{fi}ien is complete <= only f = 0 is orthogonal to every f;

(for a general Banach space we just have to take f to lie in the dual space X*).
Consequently, if { f; }ien is complete, then every f € H is uniquely determined
by the sequence of inner products {(f, ;) }ien, or in other words, the analysis
operator T(f) = {(f, fi)}ien is an injective mapping into the space of all
sequences. However, this doesn’t give us an algorithm for constructing f from
those inner products, and in general there need not exist a stable way to do
50, i.e., T~! need not be continuous.

Property S seems to have no standard name in the literature (hence the
uncreative name invented here), perhaps because it is not really a very useful
concept by itself. In particular, the definition fails to provide us with a stable
algorithm for finding a choice of coefficients ¢;(f) that can be used to rep-
resent f. The definition of quasibasis addresses this somewhat by requiring
that each mapping f +— ¢;(f) be continuous (for more details on quasibases,
see [86] and the references therein). However, this is still not sufficient in
most applications, as it is not so much the continuity of each individual map
f +— ¢ (f) that is important but rather the continuity of the mapping from
f to the entire associated sequence {c;(f)}ien. In other words, in concrete
applications there is often some particular associated Banach space X4 of se-
quences (imposed by the context), and the mapping f — {¢;(f)}ien must be
a continuous linear map of X into X,. Specializing to the Hilbert space case,
this is one of the ideas behind the definition of frames (see Section 9.3.3).

Imposing uniqueness seems to be a natural requirement, and in fact, it
can be shown that even though the definition of basis does not include the
requirement that f — ¢;(f) be continuous, this follows automatically from the
uniqueness assumption (and the fact that we are using norm convergence).
Thus every basis is actually a quasibasis. Unfortunately, in many contexts
uniqueness is simply too restrictive. For example, this is the case for Gabor
systems (compare the Balian-Low Theorem, Theorem 9.16 below). The terms
“basis” and “Schauder basis” are used interchangeably in the Banach space
setting.

We can summarize the relations among the “spanning type” properties
introduced so far by the following implications:

=
basis quasibasis =  Property S

o=

complete.

—
=
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It seems unclear whether every system with Property S must actually be a
quasibasis (compare [54]), but the other implications are known to not be
reversible in general (even in a Hilbert space).

9.3.3 Frames

In the Hilbert space setting, frames are a class of sequences which not only
are quasibases but also provide stable reconstruction formulas. Frames were
first introduced by Duffin and Schaeffer [46], and that paper still provides
instructive reading today. For proofs and more information on frames and
the results presented in this section, we suggest [22], [28], [41], [55], [64], [71],
[114]. For an interesting recent paper that deals with the issue of extending
frames beyond the Hilbert space setting, see [58].

Definition 9.4. A sequence F = {f;}ien is a frame for a Hilbert space H if
there exist constants A, B > 0, called frame bounds, such that

VieH, A|fIIP <) £ < BIfIP (9.2)

i=1

The largest possible value for A and the smallest possible value for B are the
optimal frame bounds. If we can take A = B in (9.2), then we say the frame
is tight.

Every orthonormal basis is a tight frame, because an orthonormal basis
satisfies the Parseval/Plancherel formula, which is exactly (9.2) for the case
A = B = 1. However, not every frame is an orthonormal basis, even if A =
B = 1. For example, if {e;};en and {f;}ien are both orthonormal bases for
H, then {%ei}ieN U {%fi}ieN is a frame with A = B = 1 that is not an
orthonormal basis. A frame for which we can take A = B =1 is often called a
Parseval frame or a normalized tight frame (but the latter term is confusing
because some papers, such as [16], use it differently).

A frame need not be a basis (if not, it is said to be redundant or over-
complete). However, every frame is a quasibasis. A sketch of why this is true
starts with the analysis operator T: H — (? given by T(f) = {{f, fi) }ien
and the frame operator S: H — H given by Sf =T*Tf =", (f, fi) fi- The
frame definition implies that T is a bounded injective mapping of H onto a
closed subset of £2, and the inverse map 7! : range(T') — H is also bounded.
Further, it can be shown that the series defining Sf converges for every f,
and that S is actually a positive definite, invertible mapping of H onto itself.
Writing out and rearranging the equalities f = SS~!f = S~1Sf then gives
the frame expansions

o0

VieH, f=> (f,f)fi=>_(f.1:)Fs 9.3)

=1 i=1



178 Christopher Heil

where f; = S~ f;. Thus both the frame {f;}ien and its canonical dual frame
{fi}ien are quasibases. We even have simple (and computable) formulas for
the coefficients, namely, ¢;(f) = (f, f;) for the frame and ¢;(f) = (f, fi) for
the dual frame. In general, however, these scalars need not be unique. Trivial
examples of nonuniqueness are a frame which includes some zero vectors as
elements, or the union of two orthonormal bases. For a nontrivial example,
see Example 9.5.

Note that if we rearrange the elements of the frame then we still have
a frame, because the series in (9.2) is a series of nonnegative numbers, and
hence if it converges then any rearrangement also converges. It follows that
the frame expansions in (9.3) converge unconditionally. This is one of many
stability properties enjoyed by frames. As a consequence any countable index
set can be used to specify the elements of a frame.

Although the scalars in the frame expansions in (9.3) need not be unique,
out of all the possible sequences {c;}ien such that f = )", ¢;f;, the frame
coefficients have minimal energy, i.e., >, |(f, f)]*> < 3, |ci?, and equality
holds only when |¢;| = |(f, fi)| for all i. This does not imply that Soileil? is
finite; compare [31], [63], [76]. In particular applications, we can make use of
the fact that different choices of coefficients can be used to search for other
noncanonical dual functions f (possibly even from a larger space) that still
provide frame expansions but may possess extra properties important for the
application at hand. Some papers on noncanonical duals or on minimizing
with respect to other criteria than energy are [27], [30], [92].

In finite dimensions, frames are easy to characterize:

e A collection {f1,..., far} is a frame for a finite-dimensional Hilbert space
H if and only if {f1,..., far} spans H. Thus, in a finite-dimensional space,
a collection is a basis if and only if it is a linearly independent frame.

In particular, every finite set of vectors {f1,..., far} in a Hilbert space is
a frame for the subspace S = span({fi,..., fa}).

Finite-dimensional frames have many important applications, and there
remain many deep and difficult mathematical questions concerning them, such
as characterizing frames which have certain useful properties. We suggest [16],
[24], [47], [109] as some interesting papers on “finite frames;” in particular,
the last paper discusses links between finite frames and other areas such as
discrete geometry and sphere packings.

The following illustrative example shows that the relationship between
frames and linear independence is more complicated in infinite dimensions.

Example 9.5. Let e,(z) = e?™%. The system of exponentials {e, }nez is an
orthonormal basis for the Hilbert space L?[0,1]. What happens if we change
the frequencies from integers n to integer multiples n3 of some g > 07 That is,
setting e,,5(r) = €27 but keeping the domain [0, 1], we ask what properties
the new sequence {e,g}nez has in L?[0,1].
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Case 3 > 1. Note that each e,z is %—periodic and % < 1. Every finite linear

combination will likewise be %-periodic7 as will any element of the closed span.

Hence the closed span cannot be all of L2[0, 1], since there are many elements
of L?[0,1] that are not %—periodic7 such as f(z) = z. Also, the vector

1, 0<z<e¢,
f((E): _1a %S(E<%+Ea

0, otherwise,

is orthogonal to every e,3. Thus {eng}nez is incomplete when 8 > 1.

Case 3 < 1. Suppose 8 < 1. Since {\/B 2™} 7 is an orthonormal
basis for the space L2[0, %], we have

vEer0, 4], S I ens) = = IIfI2 (9.4)

nez ﬁ

Given f € L?[0,1], extend it to [0, %] by setting f(z) = 0for 1 < & < %
Then we can apply (9.4), but because of the zero extension, the norm and
inner product are from L?[0, 1]. In other words, (9.4) holds for f € L?[0,1], so

{eng}nez is a tight frame for L2[0, 1] with frame bounds A = B = % In fact,

this set is the image of an orthonormal basis for L2[0, %] under the orthogonal
projection f + f - X[g,1). This can be generalized; from an operator theory
viewpoint frames can be viewed in terms of projections and vice versa [61].

In any case, {eng}nez is a tight frame when § < 1, with frame bounds
A=B= % and frame operator S = Al = %I . Hence the dual frame elements
are é,5 = S~ (eng) = Bens, and frame expansions are trivial to compute. As
a consequence, we can see directly that this frame is not a basis, because the
coeflicients in the frame expansion are not unique. For example, the constant
function ep(x) = 1 has two expansions:

Z 5nenﬁ = €0 = Z <60; énﬁ> €ngs, (95)
neZz nez

where 0, = 1 when n = 0 and 0 otherwise. Since (eg, €,3) = 1= oy
n # 0, the two expansions in (9.5) are in fact different.

By rearranging (9.5), we can write

60 = Z Cnenﬁ (96)

n#0

2min

for appropriate scalars c,, i.e., g is expressible in terms of the other frame
elements (this cannot happen in a basis). It can actually be shown that the
proper subset {eng}nxo of the original frame {en3}nez is still a frame for
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L?[0,1], although it is no longer tight. Thus the original frame is redun-
dant in the sense that a proper subset is still a frame. For this particular
frame it can even be shown that there is an infinite set J C Z such that
{enptnez\ is still a frame for L?[0,1], so in some sense the original frame
is extremely redundant. Yet it is linearly independent using the standard ab-
stract linear algebra definition of independence, namely, every finite subset of
{eng}nez is linearly independent! For, if we write a finite linear combination

as Zi:;iN Ccpe?minbr — Zi:;iN cn 2™ where z = €277 then we can apply the
Fundamental Theorem of Algebra to conclude that such a polynomial cannot
vanish for all z unless it is the trivial polynomial. Thus {e,g}nez is very

redundant taken as a whole even though every finite subset is independent.

Remark 9.6. a. The value % is sometimes called the density of the system
{en}nez. The value % = 1 is the Nyquist density for the exponentials; at the
Nyquist density the system is an orthonormal basis, at lower densities (% <1)
it is incomplete and at higher densities ( % > 1) it is an overcomplete frame.
The Classical (or Shannon) Sampling Theorem for bandlimited signals is an

immediate consequence of the frame properties of the exponentials; for more
details on the Sampling Theorem we refer to Benedetto’s text [13].

b. Many of the statements made about the system {e,g}necz have ana-
logues for “irregular” sequences of exponentials of the form {ey, }nez =
{e?miAnz) 7 where the )\, are arbitrary points in R. In these statements
the Beurling density of the set {\,}necz replaces the value % We suggest
[114] and [60] as starting points for more details on this topic. In Section 9.4.1
below, we present some analogous results for irregular Gabor systems, and
Beurling density is defined precisely there.

c. Frames of exponentials are very special types of frames, and only some
of the statements made in Example 9.5 carry over to general frames. For
an arbitrary frame, it can be shown that if {f;};en is a redundant frame,
then there exists at least a finite set F* such that {fi}ig¢p is still a frame.
However, in general it need not be the case that infinitely many elements can
be removed yet leave a frame [6], nor that there need be some subset of the
frame that is a basis [29], [107]. The Feichtinger Conjecture is the statement
that every frame F = {f;}ier satisfying inf| fi]] > 0 can be written as a
finite union of subsequences that are Riesz bases for their closed spans. This
conjecture is open and has recently been shown to be equivalent to the deep
and longstanding Kadison—Singer Conjecture in operator theory, which has
been open since 1959 [85]; see [26], [23] for the proof of the equivalence.

9.3.4 Independence in Infinite Dimensions

We explore independence in more detail in this section. For proofs and more
information, see [28], [64], [93], [98], [108], [114].
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The following are several shades of gray in the possible definition of inde-
pendence.

Definition 9.7. Let {f;}ien be a countable sequence of elements in a Banach
space X .

(a) {fi}ien 4s a basis or Schauder basis if for each f € X there exist unique
scalars ¢; such that f =% c;fi.

(b) {fi}ien is minimal if for each j € N, the vector f; does not lie in
span ({fi}iz;). Equivalently (via Hahn-Banach), there must exist a se-

quence { fi}ien in the dual space X* that is biorthogonal to {fi}ien, i.e.,
(fi, fiY=11ifi=j and 0 if i # j.

(¢) {fi}ien is w-independent if the series Z;’il c; fi can converge and equal
the zero vector only when every c; = 0.

(d) {fi}ien is finitely independent (or simply independent) if every finite
subset is independent, i.e., for any N we have Zfil ci fi = 0 4f and only
ifclz---:cho.

For example, consider the system of exponentials {eng}necz described in
Example 9.5. We have already seen that the system is a basis only for g = 1.
If 3 > 1 then it is not even complete, while if 3 < 1 then it is not a basis
because we showed explicitly in (9.5) that the vector eq has two different series
representations. Additionally, equation (9.6) implies that eq lies in the closure
of span({€ns}n0), s0 the system is not minimal. Further, by subtracting eq
from both sides of (9.6) we obtain a nontrivial infinite series that converges
and equals the zero vector, so the system is not w-independent. Even so, that
system is finitely independent.

The following implications among these properties hold, none of which is
reversible in general (even in a Hilbert space):

= finitely

basis minimal w-independent .
<= independent.

o o
One technical point is that the definition of basis really combines aspects of
both spanning and independence, i.e., a basis is necessarily complete and has
Property S. Adding completeness doesn’t change the implications above, e.g.,
every basis is both minimal and complete, but a minimal sequence that is
complete need not be a basis (a sequence which is both minimal and com-
plete is sometimes called an ezact sequence). On the other hand, Property S
is exactly what is missing for a minimal or w-independent sequence to be
a basis, for with either of those hypotheses, once we know that an infinite
series Yo, ¢; f; converges, we can conclude that the coefficients are unique.
However, as shown by the example of the exponentials, finite independence
combined with Property S is not sufficient to ensure that we have a basis.
Thus we have the following equivalences:



182 Christopher Heil

. minimal with w-independent
basis <= — .

Property S with Property S,

and each of these implies finite independence, but not conversely: a finitely
independent sequence which has Property S need not be a basis. Similarly,
combining the various independence criteria with a frame hypothesis, we ob-
tain the following result, which should be compared to Example 9.5, where
we showed that a frame which is finitely independent need not be a basis.

Theorem 9.8. Let {f;}ien be a countable sequence of elements in a Hilbert
space H. Then the following statements are equivalent.

(a) {fi}ien is a frame and a basis for H.

(b) {fi}ien is a frame and a minimal sequence.

(¢) {fi}ien is a frame and an w-independent sequence.
)

(d) {fi}ien is a Riesz basis for H, i.e., it is the image of an orthonormal
basis for H under a continuous linear bijection.

(e) {fi}ien s a bounded unconditional basis for H, i.e., for each f € H there
are unique scalars ¢; such that f = >, ¢; f;, where the series converges
unconditionally, and additionally 0 < inf; || fi|| < sup; ||fil| < oo.

The most common terms used to describe a frame which satisfies the equiv-
alent conditions of Theorem 9.8 are Riesz basis and ezact frame. Continuous
linear bijections are known by a variety of names, including topological iso-
morphisms, continuously invertible maps, or even just invertible maps.

One set of extra hypotheses needed for a finitely independent set to be a
Riesz basis is given in the following theorem quoted from [28, Prop. 6.1.2] and
originally proved in [33], [87].

Theorem 9.9. Let {f;}ien be a countable sequence of elements in a Hilbert
space H, and let Ay be the optimal lower frame bound for {fi}X.; as a frame
for its span. Then the following statements are equivalent.

(a) {fi}ien is a Riesz basis for H.
(b) {fi}ien is finitely independent and inf Ay > 0.
(¢) {fitien is finitely independent and imy_,oo AN exzists and is positive.

If {e, }nen is an orthonormal basis for H, then the renormalized sequence
{%=}nen is a trivial example of a Schauder basis that is not a Riesz basis. On
the other hand, here is a nontrivial example where all the elements have the
same norm.

Ezample 9.10. Fix 0 < o < 3; then |z|® and |z[~* both belong to L?[—1, 1].

, : 272
Hence {e*™"%|x|%},cz and {e?™"%|z|~%},cz are biorthogonal systems in
L?[—1, 1] and therefore are minimal. It is a much more difficult result, due to

272
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Babenko [3], that these systems are actually Schauder bases for L?[—1, 1] (see

also the discussion in [108, pp. 351-354]). Since these systems are obtained by
taking the orthonormal basis {€27¥"*}, .7 and performing an operation that
is not a continuous bijection (i.e., multiplying by the function |z|* which has
a zero or by the unbounded function |z|~%), they are not Riesz bases. On the
other hand, these systems do possess one but not both frame bounds. Specif-
ically, {€*™"®|z|*},,cz is a Bessel sequence while {e2™"®|x| =%}, c7 possesses
a lower frame bound.

9.4 Gabor Frames

Now we will discuss the special class of frames known as Gabor frames (they
are also often called Weyl-Heisenberg frames). This is one part of the broader
field of time-frequency analysis. We will survey some results on Gabor frames,
with the choice of topics inspired by issues relating to independence and the
HRT Conjecture. As a result, many important topics and contributions by
many founders of the field are not included. For a more complete introduction
to time-frequency analysis we recommend Grochenig’s text [55], and for sur-
veys and basic information on Gabor frames we suggest [22], [28], [41], [71],
[81].

9.4.1 Density and Gabor Frames

In this section we give some background on Gabor systems and Gabor frames.

Definition 9.11. Let g € L2(R). The translation of g by a € R is T,g(z) =
g(z — a), and the modulation of g by b € R is Myg(x) = e*™%g(z). The
compositions

MyT,g(z) = e g(z — a)

and ‘ ‘
TaMb(CC) — 627mb(ac—a)g(x _ a) _ 6—27rmbeTag(I)

are time-frequency shifts of g. If A C R? then the Gabor system generated
by g and A is

G(g,A) = {MpTag}(a,pyean-
If a Gabor system is a frame for L>(R), then it is called a Gabor frame.

Note that A should technically be regarded as a sequence of points in R?
rather than a subset, because frames can allow duplicate elements, and so we
should allow repetitions of points in A. However, for simplicity we usually just
write A C R? even though we mean that A is a sequence. Typically, we are
interested in countable sets A, and the most common case is where A is the
rectangular lattice A = oZ x BZ. The cases of general lattices A = A(Z?)
and nonlattice or “irregular” sets of time-frequency shifts A are also very
interesting and important.
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Ezample 9.12. (a) G(X[o,1), Z*) is a Gabor orthonormal basis for L?(R).

(b) Gabor studied the system G(e~*", Z2) in the context of information theory
[51]. It can be shown via Zak transform techniques that this system is not
a frame, and is overcomplete by exactly one element [102], [77]. That
is, one element may be removed and leave a complete set, but not two
elements. Thus g(e*“, Z?\ (0,0)) is minimal and complete. However, it
is not a basis for L?(R) [49, p. 168]. The Zak transform is briefly discussed
in Section 9.5.3.

(c) It is easy to create specific Gabor frames. For example, if g € L*(R) is
supported in [0, %] and satisfies >, 5 |g(x—na)|> = 1, then G(g, 0Z x BZ)
is a tight frame. Note that this requires a3 < 1; compare Theorem 9.13
below. If a3 = 1, then g will be discontinuous; compare Theorem 9.16
below. However, if af < 1, then we can create frames where g is as
smooth as we like, even infinitely differentiable. These frames, and their
wavelet analogues, are the “painless nonorthogonal expansions” of [42].
For recent higher-dimensional “irregular” frame constructions in a similar
spirit, see [1].

Let us mention that Gabor systems have a natural connection to repre-
sentation theory. The time-frequency plane R? appearing in the definition of
a Gabor system is really the Heisenberg group in disguise. One form of the
Heisenberg group is H =T x R x R, where T = {z € C : |z| = 1}, with a
group operation that is induced by considering a point (z,a,b) € H to cor-
respond to the operator zM,T, defined by (:MT,f)(z) = 2e*™% f(x — a).
That is, (z,a,b) — 2M,T, is required to be an injective homomorphism of H
into the set of unitary mappings of L?(R) onto itself. Since

(zMyT,) o (wMyT,) = e 2™y My g Tagcs
the group operation on H is therefore
(z,a,b) - (w,c,d) = (e ™20, a4 ¢, b+ d).

This makes H a non-Abelian group, even though as a set it is simply the
Cartesian product T x R x R.. To be a little more precise, the Heisenberg group
is usually defined by considering compositions of “symmetric” time-frequency
shifts M b ToM b, and so the standard definitions differ in normalization from
what is given here. For precise details we refer to [55, Ch. 9], [49]. The mapping
(z,a,b) — zMT, is (except for normalization) the Schrddinger representation
of H. Although the unit modulus scalars z are needed to define the group
operation in H, they play no role in many parts of time-frequency analysis,
and hence we often end up dealing with the time-frequency plane R? rather
than H.

Gabor systems defined with respect to rectangular lattices are especially
nice, and have connections to the theory of C* and von Neumann algebras (for
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more on this connection see [44], [52], [61]). Such rectangular Gabor systems
have properties that are very reminiscent of the system of exponentials dis-
cussed in Example 9.5. Specifically, the following result holds; note the similar
role that the value o plays as compared to the value of 8 in Example 9.5.

Theorem 9.13. Let g € L?(R) and let A = aZ x 3Z where a, 3 > 0. Then the
Gabor system G(g, aZ x BZ) = {e?™ "% g(x — ak) } k. nez satisfies the following.

(a) If G(g,aZ x BZ) is a frame for L*>(R), then 0 < a3 < 1.

(b) If G(g,aZ x BZ) is a frame for L?(R), then it is a Riesz basis if and only
if af = 1.
(c) If aB > 1, then G(g,aZ x BZ) is incomplete in L*(R).

Theorem 9.13 has a long history that we cannot do justice to here. We
mention only the following facts, and for more detailed history and references
refer to the expositions in [17], [41], [55], [81].

Part (c) of Theorem 9.13 was proved the case that af is rational by
Daubechies [40] and for arbitrary «f by Baggett [4]. Daubechies’ proof re-
lied on the Zak transform, while Baggett used the theory of von Neumann
algebras. Daubechies also noted that a proof for general a8 can be inferred
from results of Rieffel [104] on C* algebras. Another proof of part (c¢) based
on von Neumann algebras is given in [44], and a new proof appears in [20)].

Since every frame is complete, part (a) is of course a consequence of
part (c), but we state it separately to emphasize the contrast with the case of
irregular Gabor systems as stated in Theorem 9.14 below. A simple proof of
part (a) was given by Janssen [79]. This proof relies on the algebraic structure
of the rectangular lattice aZ x BZ and the remarkable Wezler—-Raz Theo-
rem for Gabor frames G(g,aZ x (Z). For more on Wexler—Raz see [79], the
expositions in [55, Sec. 7.5], [81], [62], and the rigorous proofs in [80], [44].

In part (b), given a Gabor frame G(g, aZ x [Z), it is easy to prove using
the Zak transform that if a8 = 1, then this frame must must be a Riesz basis.
However, the converse is not as easy, and was first proved by Ramanathan and
Steger in [103] as a special case of a much more general result (Theorem 9.14)
discussed below. Today there are “straightforward” proofs of part (b), again
based on Wexler—Raz.

In Theorem 9.13, the value af that distinguishes between the various
cases is a measurement of the “size” of the lattice aZ x BZ, as it is the area
of a fundamental domain for that lattice. In the irregular setting there is no
analogue of fundamental domain, and instead it is the Beurling density of
A that distinguishes between the various cases. Beurling density measures
in some sense the average number of points inside unit squares. Because the
points are not uniformly distributed, there is not a single definition, but rather
we obtain lower and upper limits to the average density. More precisely, we
count the average number of points inside squares of larger and larger radii
and take the limit, yielding the definitions
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D~ (A) = liminf inf #(L?T(z))
r—00 ZERz r
#(AN Q)

DT (A) = limsup sup

2 b)
r—oo zcR2 T

for the lower and upper Beurling densities of A. Here Q,(z) is the square in
R? centered at z with side lengths 7 and #E denotes cardinality. Using this
notation, we can give necessary conditions for a Gabor system to be a frame
or Riesz basis for L2(R), as follows.

Theorem 9.14. Let g € L*(R) and let A C R? be given. Then the Gabor
system G(g, A) has the following properties.

(a) If G(g, A) is a frame for L*>(R), then 1 < D~ (A) < DT (A) < 0.
(b) If G(g, A) is a Riesz basis for L2(R), then D~ (A) = D*(A) = 1.
(c) If D=(A) < 1, then G(g, A) is not a frame for L*(R).

The result above was first proved (under some extra hypotheses) by Lan-
dau [91] and Ramanathan and Steger [103]. Inspired by the paper [60], those
extra hypotheses were removed in [32] (and the result was also extended to
higher dimensions and multiple generators). The papers [8], [9] show among
other results that Theorem 9.14 is not just a result about Gabor frames but
can be extended to the much more general situation of localized frames. More-
over, new consequences follow even for Gabor frames, such as the fact that
the index set of any tight Gabor frame must possess a certain amount of uni-
formity, in the sense that the upper and lower Beurling densities will coincide,
i.e., D7 (A) = D (A). Related results appear in [6], [7]. Localized frames were
independently introduced by Grochenig in [58]; among other results Grochenig
shows that localized frames are frames not merely for the underlying Hilbert
space H but also for an entire family of associated Banach spaces. Additional
papers on localized frames are [57], [36].

Since the Beurling density of a rectangular lattice is D~ (aZ x fZ) =
Dt (aZ x BZ) = aiﬁ, Theorem 9.14 almost, but not quite, recovers Theo-
rem 9.13. One trivial difference is in part (b) of the two theorems: the im-
plications proceed in both directions in Theorem 9.13(b) but only in one
direction in Theorem 9.14(b). For a counterexample to the converse direction
in Theorem 9.14(b), take a Gabor frame G(g, A) that happens to be a Riesz
basis and add a single point, say A, to A. Then G(g, AU {\}) is a redundant
frame, but the Beurling density is the same, D~ (AU{\}) = DT (AU{\}) = 1.

On the other hand, the difference between Theorem 9.13(c) and Theo-
rem 9.14(c) is much more significant. Ramanathan and Steger conjectured in
[103] that Theorem 9.14(c) should be improvable to say that if D~ (4) < 1
then G(g, A) is incomplete in L?(R), but this was shown in [17] to be false:
for any € > 0 there exists a function g € L*(R) and a set A C R? with



9 Linear Independence of Finite Gabor Systems 187

DT (A) < e such that G(g, A) is complete. The counterexample built in a fun-
damental way on the work of Landau on the completeness of exponentials
in L?(S) where S is a finite union of intervals. Another counterexample, in
which A is a subset of a lattice, appears in [113]. In [99], [100], it is shown
that there exist g € L%(R) and A of the form A = {(\,,0)},ez such that
G(g,A) = {T\, g}nez is complete in L2(R) and {\,}ncz is a perturbation of
the integers Z. Thus DT (A) = 0 for this example.
We close this section with some remarks.

Remark 9.15. a. Theorems 9.13 and 9.14 provide necessary conditions for a
Gabor system to be a frame. Some sufficient conditions are known; see for
example [41, Sec. 3.4], [55, Sec. 6.5], [71, Sec. 4.1]. For the Gaussian func-
tion g(z) = e, there is actually a complete characterization of when
g(e—f ,aZ x BZ) is a frame; specifically, this occurs if and only if a8 < 1; see
the simple proof and additional references in [79].

The Gaussian is one of only three functions for which such a characteri-
zation is currently known (not counting trivial modifications such as trans-
lations, modulations, dilations). The other two are the hyperbolic secant
g(z) = —3— and the two-sided exponential g(z) = eIl [83], [84]. The
precise set of (a, §) for which G(X[g 1), aZ x BZ) is a frame is not known, but
surprisingly, it appears to be an extremely complicated set, called “Janssen’s
tie” [82]. The problem of characterizing those sets E C R such that G(X g, Z?)
is a frame has been shown to be equivalent to a longstanding open problem
of Littlewood [25].

b. In concrete situations, a given Hilbert space often does not appear in
isolation, but is associated with an extended family of Banach spaces. A classi-
cal example is L?(R) sitting inside the class of Lebesgue spaces LP(R), which
are themselves contained in the extended family of Besov spaces B??(R) and
Triebel-Lizorkin spaces FP'9(R). Wavelet frames (briefly discussed in Sec-
tion 9.4.3) typically provide expansions of functions not only in the Hilbert
space L2(R) but in all of the Besov and Triebel-Lizorkin spaces simultane-
ously. The norms of these spaces are related to smoothness properties of the
function, and this smoothness information can likewise be identified by ex-
amining the coefficients in the wavelet expansion. Analogously, Gabor frames
can provide expansions not only for L?(R) but for an appropriate extended
family of Banach spaces MP'9(R) known as the modulation spaces. The modu-
lation space norms quantify time-frequency concentration rather than smooth-
ness. These spaces were introduced and extensively studied by Feichtinger and
Grochenig. An excellent textbook development of the modulation spaces ap-
pears in [55, Chs. 11-14]. We also mention the mostly expository paper [66],
which surveys one application of the modulation spaces to the analysis of
spectral properties of integral operators.
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9.4.2 Gabor Riesz Bases and the Balian—Low Theorem

In this section we consider Gabor frames that are Riesz bases. At least for
the case where A is a rectangular lattice, all Gabor Riesz bases are “bad.”
Paraphrased in a qualitative form, the Balian-Low Theorem or BLT* states
that if G(g,aZ x BZ) is a Gabor Riesz basis (which by Theorem 9.13 can
only happen when a8 = 1), then g is either not smooth or decays poorly at
infinity. Here are two precise variations on this theme. In these, § denotes the
Fourier transform of g (we use Benedetto’s preferred normalization §(w) =

fg(z) 6727riwx dI)
Theorem 9.16 (Balian—Low Theorems).

(a) Classical BLT: If g € L*(R) is such that G(g, «Z x 3Z) is a Gabor Riesz
basis for L*(R), then

(/O; |t9(t)|2dt) (/O; Iwﬁ(w)l2dw) = oo. (9.7)

(b) Amalgam BLT: If g € L*(R) is such that G(g,aZ x BZ) is a Gabor
Riesz basis for L>(R), then g, g ¢ W (Co, ('), where

W(Co, ') = {continuous f: Z I - Xty oo < oo} (9.8)

k=—o0

Note that the quantity appearing on the left-hand side of (9.7) is the
Heisenberg product that appears in the Classical Uncertainty Principle. In
particular, the generator of any Gabor Riesz basis must maximize uncertainty.
See [50] for a general survey on the uncertainty principle, [12] for some other
connections between Gabor systems and uncertainty principles, and [56] for
new uncertainty principles in time-frequency analysis.

The Classical BLT was introduced independently by Balian [10] and Low
[97]. A gap in their proofs was later filled in Daubechies’ influential article
[40], which also contains many important results on frames, Gabor systems,
and wavelets (much of which was incorporated into [41]). An exquisite proof
of the Classical BLT for the case of orthonormal bases was given by Battle
[11], based on the operator theory associated with the Classical Uncertainty
Principle; this proof was extended to Riesz bases in [43]. Variations on these
proofs that avoid the use of distributional differentiation are given in [17]. A
survey of recent results on the BLT appears in this volume [38].

4Yes, that is a joke: in the United States a “BLT” is a Bacon, Lettuce, and
Tomato sandwich. As far as I know, this acronym was first used in print in [17], due
entirely to John Benedetto’s wonderful sense of humor.
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The Amalgam BLT was first published in [17], although it was proved
earlier in [63]. It is shown in [17] that neither version of the BLT implies the
other. The space W (Cy, £!) appearing in (9.8) is an example of a Wiener amal-
gam space. While specific amalgam spaces have been used often throughout
the mathematical literature, Feichtinger introduced and extensively studied
general amalgam spaces, whose norm combines a local criterion for member-
ship with a global criterion. The article [65] is an expository introduction
to these spaces, including many references as well as a simple proof of the
Amalgam BLT.

The BLT emphasizes that for applications where Gabor systems are useful,
it is redundant Gabor frames that will usually be most appropriate. On the
other hand, there is a remarkable construction known as Wilson bases that
are in the spirit of time-frequency constructions, are generated by “nice” func-
tions, and are unconditional bases not only for L?(R) but also for the class
of modulation spaces. Unfortunately, there is a cost in the form of increased
technicality; Wilson bases do not have the simple form that Gabor systems
have. For more on Wilson bases, we suggest [55, Sec. §].

Let us close this section by pointing out some related open problems and
questions.

e Does the BLT hold for lattices that are nonrectangular? This question was
recently answered affirmatively for the case of the Classical BLT in one
dimension in [59], but as soon as we move to higher dimensions, only partial
results are known. In particular, it is shown in [59] that the Classical BLT
generalizes to the case of symplectic lattices in higher dimensions, but
for nonsymplectic lattices little is known (see also Section 9.5.1 below).
Some weaker partial results are also known to hold for the analogue of the
Classical BLT for irregular Gabor Riesz bases. For more on the BLT on
symplectic lattices, see [59] and [15], and for other recent results on the
BLT see [14], [53].

e The situation for the Amalgam BLT is even less clear: it is not known even
in one dimension if the Amalgam BLT still holds if rectangular lattices are
replaced by general lattices A(Z?) or by irregular sets of time-frequency
shifts.

e Little is known about Gabor systems that are Schauder bases but not
Riesz bases for L?(R). One such example is G(g,Z?), where g(z) =
|[2|*X(_1 1(2) and 0 < o < 1 (compare Example 9.10). It is not known
if the BLT theorems hold if Gabor Riesz bases are replaced by Gabor
Schauder bases, although it is interesting to note that the proof of the
Weak BLT given in [17, Thm. 7.4] or [59, Thm. 8] generalizes from Riesz

bases to Schauder bases.

e It was conjectured in [45] that Gabor Schauder bases follow the same
Nyquist-type rules as Gabor Riesz bases, i.e., if G(g, A) is a Gabor Schauder
basis then D~ (A) = D*(A) = 1. Some partial results were obtained in
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[45], but the conjecture remains open. More generally, is there a Nyquist
density result for Ga2bor systems that are minimal and complete but not
bases, such as G(e™* ,Z? \ (0,0)) from Example 9.127

e In [115], [116], Zalik gave some necessary and some sufficient conditions on
g € L*(R) and countable subsets I" C R such that {T,g}acr is complete
in L?(R); see also the recent constructions in [99], [100]. Olson and Zalik
proved in [101] that no such system of pure translations can be a Riesz
basis for L?(R), and conjectured that no such system can be a Schauder
basis. This conjecture is still open. Since {Tog}taer = G(g,I" x {0}) and
D—(I" x {0}) = 0, it follows from Theorem 9.14 that such a system can
never be a frame for L?(R). Similarly, if the density theorem conjectured
for Gabor Schauder bases in the preceding question could be proved, then
the Olson—Zalik Conjecture would follow as a corollary.

9.4.3 The Zero Divisor Conjecture and a Contrast to Wavelets

One motivation for the HRT Conjecture is simply the question of how similar
Gabor frames are to the system of exponentials presented in Example 9.5:
Is every Gabor frame finitely linearly independent? Since this is a question
about finite subsets, it leads directly to the statement of Conjecture 9.1.

As one motivation for why we might be interested in such a question, let
us contrast the situation for a different class of objects, wavelet systems. For
more background on wavelets, we suggest [41], [74], or, for more elementary
introductions, [111], [19]. Many of the influential early wavelet papers and
their precursors are reprinted in [72].

Just as Gabor systems are associated with the Schrodinger representation
of the Heisenberg group, wavelets are associated with a representation of an-
other group, the affine or ax + b group. Instead of considering time-frequency
shifts, consider time-scale shifts, which are compositions of the translation
Tog(z) = g(x — a) with the dilation

Dyg(x) = r'/?g(rz),

which has been normalized so that D, is a unitary operator on L?(R). Specif-
ically, given g € L?(R) and a sequence A C R x R*, the wavelet system
generated by g and A is the collection of time-scale shifts

W(g, A) = {TaDbg} (ap)e-

The group underlying wavelet systems is the affine group, which is the set A =
R xRT endowed with a group multiplication that makes the mapping (a, b) —
T,Dp an injective homomorphism of A into the set of unitary mappings of
L?(R) onto itself, and this mapping is the corresponding representation.

For wavelet systems, the analogue of Conjecture 9.1 fails. For example, a
function ¢ is said to be refinable, or is called a scaling function, if there exist
coefficients ¢ such that
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oo

p) = > cxp(2r—k) (9.9)

k=—o0

(often the term scaling function is reserved for functions that satisfy addi-
tional requirements beyond just (9.9), for example, they may be required to
be associated with a multiresolution analysis, see Remark 9.17 below). If only
finitely many coefficients ¢ in (9.9) are nonzero, then we have an expression
of finite linear dependence among the time-scale shifts of . That is, W(p, A)
is dependent with a finite A. It is not hard to construct such functions, for
example, the box function b = X[ 1) satisfies the refinement equation

b(z) = b(2x) + b(2z — 1).

Thus the analogue of Conjecture 9.1 fails when the Heisenberg group is re-
placed by the affine group. This raises the fundamental question: what is the
basic difference between the affine group and the Heisenberg group which
makes their behavior with regard to this conjecture so different? While both
the affine group and the Heisenberg group are non-Abelian, the Heisenberg
group is “nearly Abelian” in contrast to the affine group. For example, both
are locally compact topological groups, and the Heisenberg group is unimod-
ular (left and right Haar measure coincide), as are all Abelian locally compact
groups, whereas the affine group is nonunimodular (see [71]). Another differ-
ence is that the Heisenberg group has discrete subgroups (e.g., {1} x Z x Z)
while the affine group does not. Which, if any, of these are the essential dif-
ference in regard to the HRT Conjecture?

More generally, we could replace the Heisenberg or affine groups by other
groups, and consider representations of arbitrary topological groups on L?(R).
This leads to a connection with the open Zero Divisor Conjecture in abstract
algebra, introduced in [75]. For a discussion of the Zero Divisor Conjecture
and the connection between zero divisors and independence of translates we
refer to the papers by Linnell, including [94], [95], [96].

We conclude this section by pointing out a few other related questions and
connections.

Remark 9.17. a. Refinable functions play a central role in several areas, in-
cluding subdivision schemes in computer-aided geometric design and the con-
struction of orthonormal wavelet bases [41]. The now-classical method for con-
structing a wavelet orthonormal basis for L?(R)) begins with a scaling function
@ which has the additional property that the collection of integer translates
{p(x — k)}rez is an orthonormal sequence in L?(R). Such a ¢ leads to a
multiresolution analysis (MRA) for L?(R), from which is deduced the exis-
tence of a wavelet ¢ which has the property that {27/24(2"x — k)},, kez is an
orthonormal basis for L?(R). Thus the scaling function ¢, whose time-scale
translates are finitely dependent, leads to another function ¢ which generates
an orthonormal basis for L?(R) via time-scale translates.
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b. There are also non-MRA constructions of orthonormal wavelet bases;
these are especially surprising in higher dimensions [5], [18], [39].

c. The refinement equation (9.9) implies that the graph of a refinable func-
tion  possesses some self-similarity. This leads to connections to fractals and
iterated function systems. The analysis of the properties of refinable func-
tions is an interesting topic with a vast literature; we refer to the paper [21]
for references.

d. While the analogue of the HRT Conjecture fails in general, Christensen
and Lindner [34], [35] have interesting partial results on when independence
holds, including estimates of the frame bounds of finite sets of time-frequency
or time-scale shifts.

e. There are useful recent characterizations of frames that apply in both
the wavelet and Gabor settings by Herndndez, Labate, and Weiss [90], [73].

f. One fundamental difference between wavelet orthonormal bases or Riesz
bases and their Gabor analogues is that the analogue of the Balian-Low The-
orems fail for wavelets. For example, it is possible to find Schwartz-class func-
tions 1, or compactly supported ¢ € C (")(R) with n arbitrarily large, which
generate wavelet orthonormal bases for L?(R). Another fundamental differ-
ence occurs in regard to density phenomenon. While Theorem 9.14 shows that
Gabor frames have a Nyquist density similar to the one obeyed by the system
of exponentials discussed in Example 9.5, there is no exact analogue of the
Nyquist density for wavelet frames. Analogues of the Beurling density appro-
priate for the affine group were introduced in the papers [67], [110] (see also
[89] for a comparison of these definitions and [37] for density conditions on
combined Gabor/wavelet systems). While there is no Nyquist phenomenon in
the sense that wavelet frames can be constructed with any particular density,
it was shown that wavelet frames cannot have zero or infinite density, and the
details of the arguments suggest a surprising amount of similarity between
the Heisenberg and affine cases, cf. [68].

9.5 Partial Results on the HRT Conjecture

Now we return to the HRT Conjecture itself, and present some of the partial
results that are known and some of the techniques used to obtain them. Using
the notation introduced so far, we can reword the conjecture as follows:

e If g € L?(R) is nonzero and A = {(au, Bk)}_, is a finite set of distinct
points in R?, then G(g, A) is linearly independent.

Before presenting the partial results themselves, let us make some general
remarks on why the conjecture seems to be difficult. A profoundly deep expla-
nation would be an interesting research problem in itself; we will only point
out some particular difficulties.
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One major problem is that the conjecture is resistant to transform tech-
niques. For example, applying the Fourier transform simply interchanges the
translations and modulations, converting the problem into one of exactly the
same type. Another natural transform for time-frequency analysis is the short-
time Fourier transform (STFT). Given a “window function” ¢ € L?(R), the
STFT of g € L?(R) with respect to ¢ is

V¢g($7w) = <gvaT1§0>; (1’7(4}) € R2.

With ¢ fixed, the mapping g — V,g is an isometry of L?(R) into L?(R?).
However,

Vo (MyTog)(z,w) = e 2™V g(x — a,w — b).

Thus, the STFT converts translations and modulations of g into two-dimen-
sional translations and modulations of Vg, again yielding a problem of the
same type, except now in two dimensions. There are many closely related
transforms, such as the Wigner distribution, and quadratic versions of these
transforms such as g — Vg, but all of these have related difficulties. On the
other hand, as we will see below, for special cases transforms can yield useful
simplifications.

9.5.1 Linear Transformations of the Time-Frequency Plane

There is a class of transformations that we can apply that will sometimes
simplify the geometry of the set of points A = {(ay, 8)}4r., appearing in
Conjecture 9.1. For example, let A be the linear transformation A(a,b) =
(%,br) where r > 0 (note that det(A) = 1). Then

Dy (Mg, Topg) () = 2™ g (rw — ay.) = Mg, Tew (Drg)(x).
Since the dilation D, is a unitary map, it preserves independence, and hence
G(g,A) is independent <= G(D,g, A(A)) is independent.

Thus, we can change the configuration of the points from the set A to the set
A(A) at the cost of replacing the function g by a dilation of g.

In fact, if A is any linear transformation of R? onto itself with det(A4) = 1,
then there exists a unitary transformation U4 : L?(R) — L?(R) such that

Ua(G(g,4)) = {Ua(MpTog)}(apyea = {cala,b) MvTu(UAg)}(u,v)eA(/(l)a )

9.10

where c4(a, b) are constants of unit modulus determined by A. The rightmost

set in (9.10) is not a Gabor system, but is obtained from the Gabor system

G(Uag, A(A)) by multiplying each element by a constant of unit modulus.

Such multiplications do not change the two properties we are interested in
here, namely, being a frame or being linearly independent. In particular,
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G(g,A) is independent <= G(Uag, A(A)) is independent.

As a specific example, consider the shear A(a,b) = (a,b+ra). Then Uy is
the modulation by a “chirp” given by Uaf(x) = e”imzf(x). To see this, set
and verify that

cala, b)) MyiraTo(Uag)(x) = Ua(MpTag) ().

Another example is A(a, b) = (b, —a), rotation by /2, for which U4 = F, the
Fourier transform.

In addition to linear transformations of R?2, we can also use rigid transla-
tions, for they correspond to replacing g by MyT.g and A by A — (¢, d).

The operators U, are called metaplectic transforms. Every linear transfor-
mation A of R? with determinant 1, i.e., every element of the special linear
group SL(2,R), yields a metaplectic transform. Unfortunately, as soon as
we move to higher dimensions, this is no longer true. Only matrices lying in
the symplectic group S,(d), which is a subset of SL(2d,R), yield metaplec-
tic transforms (the symplectic group consists of those invertible matrices A
which preserve the symplectic form [z,2'] = 2’ - w — z - W', where z = (z,w),
2 = (2',w') € R?%). This stems from properties of the Heisenberg group, and
for more details we refer to [55, Ch. 9]. In any case, this means that some
of the simplifications we apply below to prove some special cases of the HRT
Conjecture may not apply in higher dimensions.

—mira?

cala,b) =e

9.5.2 Special Case: Points on a Line

In this section we will prove a special case of the HRT Conjecture, assuming
that A = {(au, Bk) 1, is a set of collinear points. By applying an appropriate
metaplectic transform, we may assume that A = {(as,0)}2_,. Then G(g,4) =
{g(xz — ap)}_, is a finite set of translations of g. Suppose that we have
Efgvzl crg9(x — ar) = 0 a.e. for some scalars cy,...,cn. Taking the Fourier
transform of both sides of this equation converts translations to modulations,
resulting in the equation

N
Z cpe 2Rt G(€) = 0 a.e.
k=1

Since § # 0, it is nonzero on some set of positive measure. But then the
nonharmonic trigonometric polynomial m(§) = Z]kvzl cp e~ 2™ must be
zero on a set of positive measure. If the oy, are integer, it follows immediately
from the Fundamental Theorem of Algebra that ¢; = --- = ¢y = 0. This is
still true for arbitrary oy, since m can be extended from real values of £ to
complex values, and the extension is an analytic function. Thus, we conclude
that G(g, A) is linearly independent when the points in A are collinear.
While the HRT Conjecture turns out to be trivial when we restrict to
the case of pure translations of g, there are still many interesting remarks to
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be made about this case. Consider first the fact that if we replace L?(R) by
L>°(R) then finite sets of translations can be linearly dependent (for example,
consider any periodic function). In one dimension, it can be shown that any
finite set of translations of a nonzero function g € LP(R) with p < co are in-
dependent, but note that this is already a more difficult problem because the
Fourier transform exists only distributionally when p > 2. Moreover, Rosen-
blatt and Edgar have shown that there is a surprise as soon as we move to
higher dimensions: sets of translates can be dependent for finite p. The fol-
lowing result was proved in [48], [105].

Theorem 9.18.

(a) If g € LP(RY) is nonzero and 1 < p < d2—_d1, p # 0o, then {g(z — ay) Y,
is linearly independent for any finite set of distinct points {ax}_, in RY.

(b) If d2—_d1 < p < o0, then there exists a nonzero g € LP(RY) and distinct
points {ax}_, in R? such that {g(x — ay)}i_, is linearly dependent.

We close this section by noting that subspaces of L?(R) of the form
V = span({Ta,9}ren) generated from translations of a given function are
important in a wide variety of applications. In particular, a subspace of the
form V = span({T;g}ren) is invariant under integer translations, and hence is
called a shift-invariant space (but it need not be translation-invariant, which
means invariant under all translations). Shift-invariant spaces play key roles
in sampling theory, the construction of wavelet bases and frames, and other
areas. For a recent research-survey of shift-invariant spaces in sampling theory,
we suggest [2].

9.5.3 Special Case: Lattices

Suppose that A = {(ax, B)}_, is a finite subset of some lattice A(Z?), where
A is an invertible matrix. By applying a metaplectic transform, we may assume
that A is a subset of a rectangular lattice aZ x SZ with o = |det(A)|. We
say that it is a wnit lattice if a3 = 1; in this case, by applying a dilation we
can assume o = = 1. The HRT Conjecture is easily settled for this special
case by applying the Zak transform, which is the unitary mapping of L?(R)
onto L?([0,1)?) given by

Zf(t,w) =Y flt—k) ™, (tw) €[0,1)?,

keZ

(the series converges in the norm of L2([0,1)?)). The Zak transform was first
introduced by Gelfand (see [55, p. 148]), and goes by several names, including
the Weil-Brezin map (representation theory and abstract harmonic analysis)
and k-gq transform (quantum mechanics). For more information, we refer to
Janssen’s influential paper [77] and survey [78], or Grochenig’s text [55]. For
our purposes, the most important property of the Zak transform is that
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Z(MyTng)(t,w) = e2™Mte=2mke 7ot W), (k,n) € Z°.

It follows easily from this that any finite linear combination of functions
MyT,g with (k,n) € Z? is independent, using the fact that a nontrivial
(two-dimensional) trigonometric polynomial cannot vanish on a set of pos-
itive measure. This settles the case af = 1.

This argument cannot be extended to more general rectangular lattices
aZ x BZ with af # 1 because Z(My3Tyq9) is no longer just a two-dimensional
exponential times Zg. A fundamental obstacle is that the operators My, T,
commute when k, n are integers, but the operators Myg, T}, do not com-
mute in general. On the other hand, the operators Mg, T,, generate a von
Neumann algebra, and it is through this connection that Linnell was able
to prove the HRT Conjecture for the special case that A is contained in an
arbitrary lattice [96].

Although this is contained in Linnell’s result, let us sketch a proof of
the HRT Conjecture for the special case N = 3, since it reveals one of the
difficulties in trying to prove the general case. If N = 3 then, by applying
a metaplectic transform, we may assume that A = {(0,0), (a,0), (0,1)}, and
hence G(g, A) = {g(z), g(x — a), e>™*g(x)}. Suppose that

2mix

c19(z) + cag(x — a) + c3e“™*g(x) = 0 a.e.

If any one of ¢, co, c3 is zero, then we are back to the collinear case, so we
may assume they are all nonzero. Rearranging, we obtain

g(x —a) = m(z) g(x) a.e., (9.11)

where m(z) = —%(01 + c3 €?™®). Note that m is 1-periodic. Iterating (9.11),
we obtain for integer n > 0 that

n—1
l9(z —na)| = g(@)| [] Im(z — ja)| = |g(x)| ™7 Zi=0 P73 ae. (9.12)
j=0

where p(xz) = In|m(z)|. Now, p is 1-periodic, so if a is irrational then the
points {z — ja mod 1}%2 are a dense subset of [0, 1). In fact, they are “well
distributed” in a technical sense due to the fact that  — = 4+ a mod 1 is an
ergodic mapping of [0,1) onto itself (ergodic means that any subset of [0,1)
which is invariant under this map must either have measure 0 or 1). Hence the
quantity L Z;ZOI p(z—ja) is like a Riemann sum approximation to fol p(z) dz,
except that the rectangles with height p(x — ja) and width % are distributed
“randomly” around [0, 1) instead of uniformly, possibly even with overlaps or
gaps. Still, the ergodicity ensures that the Riemann sum analogy is a good
one in the limit: the Birkhoff Ergodic Theorem implies that

n—1

1 1
lim - ~ja) = dz = C ae. 1
nggon;)p(x ja) /Op(z) z=Cae (9.13)
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To be sure, we must verify that C' = fol p(z) dz exists and is finite, but this
can be shown based on the fact that any singularities of p correspond to zeros
of the well-behaved function m. For more information on ergodic theory, we
refer to [112].

Thus from (9.11) and (9.13) we see that |g(z — na)| =~ e“"|g(z)|. More
precisely, if we fix £ > 0, then & Z;:ol p(x — ja) > (C —¢) for n large enough.
Let us ignore the fact that “large enough” depends on z (or, by applying
Egoroff’s Theorem, restrict to a subset where the convergence in (9.13) is
uniform). Substituting into (9.12) then yields |g(z — na)| > e(© =" |g(x)]| for
n large. Considering x in a set of positive measure where ¢ is nonzero and
the fact that g € L2(R), we conclude that C' — & < 0, and hence C < 0. A
converse argument, based on the relation g(x) = m(z + a) g(x + a) similarly
yields the fact that C > 0. This still allows the possibility that C = 0, but a
slightly more subtle argument presented in [69] also based on ergodicity yields
the full result. The case for a rational is more straightforward, since in this
case the points x — ja mod 1 repeat themselves.

The argument given above can be extended slightly: we could take A =
{(0,7)}20 U{(a,0)}, for then we would still have (9.11) holding, with a dif-
ferent, but still 1-periodic, function m. However, the periodicity is critical
in order to apply ergodic theory as we have done. An additional fundamen-
tal difficulty to extending further is that as soon as we have more than two
distinct translates, we cannot rearrange a dependency relation into a form
similar to (9.11) that can be easily iterated. For example, with three dis-
tinct sets of translations, instead of (9.11) we would have an equation like
g(x —a) = m(x) g(z) + k(x) g(x — b), which becomes extremely complicated
to iterate.

9.5.4 Special Case: Compactly Supported Functions

Choose any finite set A C R?, and suppose that g € L*(R) is compactly
supported, or even just supported on a half-line. Given an arbitrary finite
set A, write A = {(ak, Bk,j)}j=1,... My, k=1,...,N, i-€., for each distinct translate
group the corresponding modulates together. Given scalars ¢y, ;, suppose

N M N
0= Z ch,j Mg, To,g(x) = ka(x)g(x — ag) a.e., (9.14)
k=1 j=1 k=1

where my(z) = Zj]\ikl cr.j €™ P Since g is supported in a half-line, the
supports of the functions g(z — ay;) overlap some places but not others. If we
choose z in the appropriate interval then only one g(x — ay) can be nonzero.
For such z, the right-hand side of equation (9.14) will contain only one nonzero
term, i.e., it reduces to my(z) g(z — o) = 0 a.e. for some single k. We can
find a subset of the support of g(x — ay) of positive measure for which this

is true, which implies the trigonometric polynomial my(z) vanishes on a set
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of positive measure. But this cannot happen unless ¢ ; = 0 for all 7. We can
then repeat this argument to obtain c; ; = 0 for all j and k. For complete
details, see [69].

9.5.5 Special Case: Hermite Functions

In this section we will prove the HRT Conjecture for the special case that
g(x) = p(x) e~ where p is a nontrivial polynomial. Such functions are fi-
nite linear combinations of Hermite functions, and the collection of all such
functions is dense in L?(R).

Given an arbitrary finite set A, write A = {(ag, Br,;)}j=1,... .My, k=1,... N
with a3 < --- < ay. If N =1 then A is a set of collinear points, so we may
assume IV > 1. Given scalars cy,;, suppose

N My

S5 e Mo, T, g(e) = 0 ace.

k=1 j=1

Because of the special form of g, this simplifies to
L
e * Z my(z) p(z — ag) 2% =0 a.e., (9.15)
k=1

where my(z) = Z]Ai"l cpj e~ 205 Without loss of generality we may

assume that m; and my are nontrivial, otherwise ignore those terms and
2

reindex. Then dividing both sides of (9.15) by e~* e2~® and rearranging,

we have

N-1
my(z)p(r —an) = — Z mp(z) p(x — o) e2(@r™N)T 5 ¢, (9.16)
k=1
However, ap —ay <0 for k=1,..., N —1, so since each my, is bounded, the

right-hand side of (9.16) converges to zero as x — oo. On the other hand, as
my is a nontrivial trigonometric polynomial and p is a nontrivial polynomial,
the left-hand side does not converge to zero.

9.5.6 Special Case: Perturbations

Now that we have proved the HRT Conjecture for dense subsets of L?(R)
such as the compactly supported functions, it is tempting to try to prove the
general conjecture by applying some form of limiting argument. We will prove
next a theorem in this spirit, and then see why this theorem fails to provide
a proof of the full conjecture.

We will need to use the following lemma, which is actually just a spe-

cial case of a general result that characterizes Riesz bases; compare [28,
Thm. 3.6.6].
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Lemma 9.19. Let {g1,...,9n} be a linearly independent set of vectors in a
Hilbert space H. Let A, B be frame bounds for {g1,...,9n} as a frame for its
span S = span({g1,...,9n}). Then

N N ) N
Ver,...,en€C, A Z lek]? < HZ ckng <B Z |ex]?. (9.17)
k=1 k=1 k=1
Proof. Let {g1,...,gn} be the canonical dual frame for {g1,...,gn} in S.
Given c1,...,cn, set f = Zivzl cxgr- The frame expansion of f is f =
Zivzl (f,Gr) gk, and because of independence we must have ¢, = (f, g). Since
55 % are frame bounds for the dual frame {g1,...,gn}, we have
1 al 1
El\f||2§2|<f,§k>|2§ ZHfHQ, (9.18)
k=1

and rearranging (9.18) gives (9.17). O

We will also need to use the continuity of the operator groups {7, }ser
and { M, },er. That is, we will need the fact that

VfELXR), lim |T.f - fla=0=lim [Mof—fllo  (9.19)

The next theorem is stated in [69]. A proof of part (a) is given there, and
will not be repeated here. The proof of part (b) is similar, but since it is not
given in [69] and is slightly more complicated than part (a), we prove it here.

Theorem 9.20. Assume that g € L2(R) and A = {(ay, Bx)}~_, are such that
G(g, A) is linearly independent. Then the following statements hold.

(a) There exists € > 0 such that G(h, A) is independent for any h € L?*(R)
with ||g — h|l2 < e.

(b) There exists € > 0 such that G(g,A’) is independent for any set A’ =
{(af,, B}, such that |ay — o], |8k — B, <e fork=1,...,N.

Proof. (b) Let A, B be frame bounds for G(g, A) as a frame for its span. Fix
0 <8< AY2/(2N'/2). Then by (9.19), we can choose ¢ small enough that

Irl<e = |Trg—glla <9, [|[Myg—gll2 <o

Now suppose that |ap —a}| < e and |G — 3] <efor k=1,...,N. Then
for any scalars cq,...,cy we have

N
HZ% MﬁkTakg‘
k=1 2

N
< Hzck Mﬁk(Takh - Taﬁc)gHQ
k=1

N N
[ en =], + [ 3 ],
k=1 k=1
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N N

<D lerl 1 Tag = Togallz + D lewl (Mg, — M) Tay gll2
k=1 k=1

N
+ || e My Ty
k=

’ 2

N

N
= lerl I Tor-ag9 = gll2 + > lexl Mg, —59 — gll2
k=1 P

N
+ H;ck Mg Toj.9 ’2

’ 2

N 1/2 N
< 2N'/? (Z |ck|2) + HZ% Mg Tor g
k=1 k=1

However, we also have by Lemma 9.19 that

N 1/2 N
4172 (Z |ck|2) < Hch Mp,To g
k=1

N N
§252|0k| + HZC}CMQ;TQ;Q
k=1 k=1

’2'

’2'

Combining and rearranging these inequalities, we find that

N 1/2 N
(4172 — 268172) (Z|ck|2) <[> e My Ty
k=1 k=1

Since A2 —2§N'/2 > 0, it follows that if 25:1 ¢k Mg Ty g = 0 a.e. then
01:-'-:CN=0. O

Unfortunately, Theorem 9.20 cannot be combined with the known special
cases, such as for compactly supported g or for lattice A, to give a proof of the
full HRT Conjecture. The problem is that ¢ in Theorem 9.20 depends on g
and A. Analogously, a union of arbitrary open intervals (r—e,, r+e¢,) centered
at rationals 7 € Q need not cover the entire line (consider €, = |r—+/2|). What
is needed is specific knowledge of how the value of € depends on g and A. The
proof above shows that the value of ¢ is connected to the lower frame bound
for G(g, A) considered as a frame for its finite span in L?(R). This leads us to
close this survey with the following fundamental problem.

e Given g € L?(R) and a finite set A C R?, find explicit values for the frame
bounds of G(g, A) as a frame for its span.

Explicit here means that the frame bounds should be expressed in some
computable way as a function of ¢g (or its properties, such as the size of its
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support) and the points in A. This is clearly an important problem with
practical implications, since implementations will always involve finite sets.
Surprisingly little is known regarding such frame bounds; the best results ap-
pear to be those of Christensen and Lindner [34]. In fact, even the seemingly
“simpler” problem of computing explicit frame bounds for finite sets of expo-
nentials {e?™x®}NV_as frames for their spans in L2[0,1] is very difficult, but
still of strong interest, see [33].
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