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ABSTRACT We present an outline of how the ideas of self-similarity can
be applied to wavelet theory, especially in connection to wavelets associated
with a multiresolution analysis of R

n allowing arbitrary dilation matrices
and no restrictions on the number of scaling functions.

2.1 Introduction

Wavelet bases have proved highly useful in many areas of mathematics,
science, and engineering. One of the most successful approaches for the
construction of such a basis begins with a special functional equation, the
refinement equation. The solution to this refinement equation, called the
scaling function, then determines a multiresolution analysis, which in turn
determines the wavelet and the wavelet basis. In order to construct wavelet
bases with prescribed properties, we must characterize those particular re-
finement equations which yield scaling functions that possess some specific
desirable property. Much literature has been written on this topic for the
classical one-dimensional, single-function, two-scale refinement equation,
but when we move from the one-dimensional to the higher-dimensional
setting or from the single wavelet to the multiwavelet setting it becomes
increasingly difficult to find and apply such characterizations.

Our goal in this paper is to outline some recent developments in the
construction of higher-dimensional wavelet bases that exploit the fact that
the refinement equation is a statement that the scaling function satisfies
a certain kind of self-similarity. In the classical one-dimensional case with
dilation factor two, there are a variety of tools in addition to self-similarity
which can be used to analyze the refinement equation. However, many of
these tools become difficult or impossible to apply in the multidimensional
setting with a general dilation matrix, whereas self-similarity becomes an
even more natural and important tool in this setting. By viewing scal-



24 Carlos A. Cabrelli, Christopher Heil, Ursula M. Molter

ing functions as particular cases of “generalized self-similar functions,” we
showed in [5] that the tools of functional analysis can be applied to analyze
refinement equations in the general higher-dimensional and multi-function
setting. We derived conditions for the existence of continuous or Lp solu-
tions to the refinement equation in this general setting, and showed how
these conditions can be combined with the analysis of the accuracy of scal-
ing functions from [4], [3] to construct new examples of nonseparable (non-
tensor product) two-dimensional multiwavelets using a quincunx dilation
matrix.

We will sketch some of the ideas and results from [5] in this paper, at-
tempting to provide some insights into the techniques without dwelling on
the mass of technical details that this generality necessitates. We emphasize
that this work is intimately tied and connected to the vast literature on
wavelets and refinement equations, and while we cannot trace those con-
nections here, a full discussion with extensive references is presented in [5].
In particular, the important and fundamental contributions of Daubechies,
Lagarias, Wang, Jia, Jiang, Shen, Plonka, Strela, and many others are dis-
cussed in [5].

2.2 Self-Similarity

The seed for this approach can be traced back to Bajraktarevic [1], who in
1957 studied solutions to equations of the form

u(x) = O(x, (u ◦ g1)(x), . . . , (u ◦ gm)(x)) (2.2.1)

where gi : X → X and O :X ×Em → E, and the solution u : X → E lies in
some function space F . Bajraktarevic proved that, under mild conditions
on O and the gi, there is a unique solution to (2.2.1). (See also [9].) A
generalized version of this equation of the form

u(x) = O(x, ϕ1(x, (u ◦ g1)(x)), . . . , ϕm(x, (u ◦ gm)(x))), (2.2.2)

where ϕi : X×E → E, was studied in [6]. We will state one uniqueness result
below, and then in later sections demonstrate the fundamental connection
between (2.2.2) and wavelets. If there exists a set B that is self-similar with
respect to the functions gi, i.e., if B =

⋃m
i=1 g−1

i (B), then we refer to the
solution u of (2.2.2) as a generalized self-similar function. This is because
at a given point x ∈ B, the value of u(x) is obtained by combining the
values of u(gi(x)) through the action of the operator O, with each gi(x)
lying in B.

In order to state the uniqueness result, we require the following notation.
Let X be a closed subset of R

n, and let ‖ ·‖ be any fixed norm on C
r. Then

we define L∞(X, Cr) to be the Banach space of all mappings u : X → Cr

such that
‖u‖L∞ = sup

x∈X
‖g(x)‖ < ∞.

This definition is independent of the choice of norm on C
r in the sense that

each choice of norm for C
r yields an equivalent norm for L∞(X, Cr). If E
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is a nonempty closed subset of Cr, then L∞(X, E) will denote the closed
subset of L∞(X, Cr) consisting of functions which take values in E. We
say that a function u : X → E is stable if u(B) is a bounded subset of E
whenever B is a bounded subset of X .

The following result is a special case of more general results proved in
[6]. In particular, we will consider here only uniform versions of this result;
it is possible to formulate Lp and other versions as well.

Theorem 2.2.1. Let X be a compact subset of R
n, and let E be a closed

subset of C
r. Let ‖ · ‖ be any norm on C

r. Let m ≥ 1, and assume that functions

wi, ϕi, and O are chosen with the following properties.

• For each i = 1, . . . ,m, let wi :X → X be continuously differentiable, injec-

tive maps.

• Let ϕi :X × E → E for i = 1, . . . ,m satisfy the Lipschitz-like condition

max
1≤i≤m

‖ϕi(x, u) − ϕi(x, v)‖ ≤ C ‖u− v‖. (2.2.3)

• Let O :X × Em → E be non-expansive for each x ∈ X, i.e.,

‖O(x, u1, . . . , um) −O(x, v1, . . . , vm)‖ ≤ max
1≤i≤m

‖ui − vi‖. (2.2.4)

Let t0 be an arbitrary point in E. For u ∈ L∞(X,E), define

Tu(x) = O(x, ϕ1(x,u(w−1
1 (x))), . . . , ϕm(x,u(w−1

m (x)))),

where we interpret

u(w−1
i (x)) = t0 if x /∈ wi(X).

If O and the ϕi are stable, then T maps L∞(X,E) into itself, and satisfies

‖Tu − Tv‖L∞ ≤ C ‖u − v‖L∞ .

In particular, if C < 1, then T is contractive, and there exists a unique function

v∗ ∈ L∞(X,E) such that Tv∗ = v∗, and, moreover, v∗ is continuous. Further,

if C < 1 and v(0) is any function in L∞(X,E), then the iteration v(i+1) = Tv(i)

converges to v∗ in L∞(X,E).

2.3 Refinement Equations

The connection between Theorem 2.2.1 and wavelets is provided by the
now-classical concept of multiresolution analysis (MRA). To construct a
multiresolution analysis in R

n, one begins with a refinement equation of
the form

f(x) =
∑
k∈Λ

ck f(Ax − k), x ∈ R
n, (2.3.1)
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where Λ is a subset of the lattice Zn and A is a dilation matrix, i.e., A(Zn) ⊂
Z

n and every eigenvalue λ of A satisfies |λ| > 1. We assume now that A,
Λ, and ck are fixed for the remainder of this paper.

A solution of the refinement equation is called a scaling function or a
refinable function. If f is scalar-valued then the coefficients ck are scalars,
while if one allows vector-valued (f : Rn → Cr) or matrix-valued (f :Rn →
C

r×`) functions then the ck are r × r matrices. We will consider the case
f : Rn → Cr in this paper. We say that the number r is the multiplicity of
the scaling function f .

The fact that A can be any dilation matrix (instead of just a “uniform”
dilation such as 2I) means that the geometry of Rn must be carefully
considered with respect to the action of A. Note that since A(Zn) ⊂ Zn,
the dilation matrix A necessarily has integer determinant. We define

m = | det(A)|.
By [13], to each scaling function that generates a MRA there will be asso-
ciated (m − 1) “mother wavelets,” so it is desirable for some applications
to consider “small” m.

The refinement operator associated with the refinement equation is the
mapping S acting on vector functions u : Rn → Cr defined by

Su(x) =
∑
k∈Λ

ck u(Ax − k), x ∈ R
n. (2.3.2)

A scaling function is thus a fixed point of S.
We will focus on compactly supported solutions of the refinement equa-

tion, and therefore will require that the subset Λ be finite. Let us consider
the support of a solution to the refinement equation in this case. For each
k ∈ Zn, let wk : Rn → Rn denote the contractive map

wk(x) = A−1(x + k). (2.3.3)

Now let H(Rn) denote the set of all nonempty, compact subsets of Rn

equipped with the Hausdorff metric. Then it can be shown that the map-
ping w on H(Rn) defined by

w(B) =
⋃

k∈Λ

wk(B) = A−1(B + Λ)

is a contractive mapping of H(Rn) into itself [11]. Hence there is a unique
compact set KΛ such that

KΛ = w(KΛ) =
⋃

k∈Λ

A−1(KΛ + k).

In the terminology of Iterated Function Systems, the set KΛ is the attractor
of the IFS generated by the collection {wk}k∈K . It can be shown that if f is
a compactly supported solution of the refinement equation, then necessarily
supp(f) ⊂ KΛ [5].

Let
D = {d1, . . . , dm}
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be a full set of digits with respect to A and Zn, i.e., a complete set of
representatives of the order-m group Z

n/A(Zn). Because D is a full set of
digits, the lattice Zn is partitioned into the m disjoint cosets

Γd = A(Zn) − d = {Ak − d : k ∈ Z
n}, d ∈ D.

Let Q be the attractor of the of the IFS generated by {wd}d∈D, i.e., Q is
the unique nonempty compact set satisfying

Q = KD =
⋃

d∈D

A−1(Q + d).

We will say that Q is a tile if its Z
n translates cover Rn with overlaps

of measure 0. In that case, the Lebesgue measure of Q is 1 [2], and the
characteristic function of Q generates a MRA in Rn [10]. This MRA is
the n-dimensional analogue of the Haar MRA in R, because if we consider
dilation by 2 in R with digit set D = {0, 1}, and set

w0(x) =
1
2
x and w1(x) =

1
2
x +

1
2
,

then the set [0, 1] satisfies

[0, 1] = w0([0, 1])
⋃

w1([0, 1])

and therefore is the attractor for the IFS {w0, w1}. Note that [0, 1] is a tile,
and that the Lebesgue measure of [0, 1] is 1.

Example 2.3.1. Tiles may have a fractal boundaries. For example, if we

consider the dilation matrix

A1 =

[
1 −1

1 1

]

and digit set D = {(0, 0), (1, 0)}, then the tile Q is the celebrated “twin dragon”

fractal shown on the left in Figure 2.1. On the other hand, if

A2 =

[
1 1

1 −1

]

and D = {(0, 0), (1, 0)}, then the tile Q is the parallelogram with vertices -

{(0, 0), (1, 0), (2, 1), (1, 1)} pictured on the right in Figure 2.1. For these two

matrices A1 and A2, the sublattices A1(Z
2) and A2(Z

2) coincide. This sublattice

is called the quincunx sublattice of Z
2. As a consequence, these two matrices A1,

A2 are often referred to as quincunx dilation matrices.

It is not always the case that, given an arbitrary dilation matrix A, there
exists a set of digits such that the associated attractor of {wd}d∈D is a tile
[14], [12]. We will not address this question here, and will only consider
dilation matrices for which a tile Q exists, and we assume that the digit
set D has been chosen in such a way that Q is a tile. Without loss of
generality, we can assume that 0 ∈ D, and therefore the tile Q will contain
the origin [5].
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FIGURE 2.1. Twin Dragon and Parallelogram Attractors

Let us now return to setting up the notation required to connect the
refinement equation (2.3.1) to Theorem 2.2.1.

Since supp(f) ⊂ KΛ, which is compact, and since Q is a tile and therefore
covers Rn by translates, there exists a finite subset Ω ⊂ Zn such that

KΛ ⊂ Q + Ω =
⋃

ω∈Ω

(Q + ω) = {q + ω : q ∈ Q, ω ∈ Ω}.

Consider now any function g : Rn → Cr such that supp(g) ⊂ KΛ. Define
the folding of g to be the function Φg : Q → (Cr)Ω given by

Φg(x) = [g(x + k)]k∈Ω, x ∈ Q.

If for k ∈ Ω we write (Φg)k(x) = g(x + k) for the kth component of Φg(x),
then this folding has the property that (Φg)k1(x1) = (Φg)k2(x2) whenever
x1, x2 ∈ Q and k1, k2 ∈ Ω are such that x1 +k1 = x2 +k2 (it can be shown
that such points x1, x2 would necessarily have to lie on the boundary of Q
[5]).

Here (and whenever we deal with vectors indexed by general sets) we
consider that Ω has been ordered in some way; the choice of ordering is not
important as long as the same ordering is used throughout. We use square
brackets, e.g., [uk]k∈Ω, to denote column vectors, and round brackets, e.g.,
(uk)k∈Ω, to denote row vectors.

Since Q is the attractor of the IFS {wd}d∈D, it satisfies

Q =
⋃

d∈D

A−1(Q + d).

Moreover, since Q is a tile, if d1 6= d2 then A−1(Q + d1)∩A−1(Q + d2) has
measure zero, and in fact it can be shown that these sets can intersect only
along their boundaries. We will require subsets Qd of A−1(Q + d) whose
union is Q but which have disjoint intersections, i.e., such that⋃

d∈D

Qd = Q and Qd1 ∩ Qd2 = ∅ if d1 6= d2.
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A precise method for creating these sets Qd is given in [5].
For each d ∈ D, define a matrix Td by

Td = [cAj−k+d]j,k∈Ω.

Note that Td consists of an Ω × Ω collection of r × r blocks, i.e., Td ∈
(Cr×r)Ω×Ω. Assume that E is a subset (but not necessarily a subspace) of
(Cr)Ω that is invariant under each matrix Td (we will specify E precisely
later). Then for each d ∈ D we can define ϕd : Q × E → E by

ϕd(x, e) = Tde, (2.3.4)

and define O : Q × ED → E by

O(x, {ed}d∈D) =
∑
d∈D

χQd
(x) · ed. (2.3.5)

That is, O(x, {ed}d∈D) = ed if x ∈ Qd. It is easy to see that this operator
O is stable and satisfies the non-expansivity condition (2.2.4). Now define
an operator T acting on vector functions u : Q → E by

Tu(x) = O(x, {ϕd(x,u(w−1
d (x)))}d∈D)

=
∑
d∈D

χQd
(x) · Tdu(Ax − d). (2.3.6)

Or, equivalently, T can be defined by

Tu(x) = Tdu(Ax − d) if x ∈ Qd.

This operator T is connected to the refinement operator S defined by (2.3.2)
as follows [5].

Proposition 2.3.1. Let Ω ⊂ Z
n be such that KΛ ⊂ Q + Ω. If g : R

n → C
r

satisfies supp(g) ⊂ KΛ, then

ΦSg = TΦg a.e. (2.3.7)

If the function g satisfies supp(g) ⊂ KΛ and additionally vanishes on
the boundary of KΛ, then the equality in (2.3.7) holds everywhere and not
merely almost everywhere. This is the case, for example, if g is continuous
and supported in KΛ.

In light of Proposition 2.3.1, in order to solve the refinement equation
(2.3.1), we need to find a solution to the equation

u = Tu,

and this is precisely the type of generalized self-similarity that is defined
in (2.2.2).
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To do this, we apply Theorem 2.2.1. The operator O is non-expansive,
the wk are affine maps, and the functions ϕd are linear. Hence, if there
exists a constant C with 0 < C < 1 and a norm ‖ · ‖ on (Cr)Ω such that

∀ d ∈ D, ∀x ∈ Q, ∀ e ∈ E, ‖ϕd(x, e)‖ ≤ C ‖e‖,
then T will have a unique fixed point. Considering the definition of ϕd, this
means that there must exist a norm in (Cr)Ω such that

∀ d ∈ D, ∀ e ∈ E, ‖Tde‖ ≤ C ‖e‖.
In other words, there must exist a norm under which all the matrices Td

are simultaneously contractive on some set. This leads naturally to the
definition of the joint spectral radius of a set of matrices. Here we will
focus only on the uniform joint spectral radius; it is possible to consider
various generalizations as well. The uniform joint spectral radius was first
introduced in [15] and was rediscovered and applied to refinement equations
by Daubechies and Lagarias in [8].

If M = {M1, . . . , Mm} is a finite collection of s × s matrices, then the
uniform joint spectral radius of M is

ρ̂(M) = lim
`→∞

max
Π∈P`

‖Π‖1/`, (2.3.8)

where

P0 = {I} and P` = {Mj1 · · ·Mj`
: 1 ≤ ji ≤ m}.

It is easy to see that the limit in (2.3.8) exists and is independent of the
choice of norm ‖ · ‖ on Cs×s.

Note that if there is a norm such that maxj ‖Mj‖ ≤ δ, then ρ̂(M) ≤ δ.
Rota and Strang [15] proved the following converse result.

Proposition 2.3.2. Assume that M = {M1, . . . ,Mm} is a finite collection

of s× s matrices. If ρ̂(M) < δ, then there exists a vector norm ‖ · ‖ on C
s such

that maxj ‖Mj‖ ≤ δ.

Consequently, a given set of matrices is simultaneously contractive (i.e.,
there exists a norm such that maxj ‖Mj‖ < 1) if and only if the uniform
joint spectral radius of M satisfies ρ̂(M) < 1.

We can now state the main theorem relating generalized self-similarity
to the existence of a continuous solution to the refinement equation.

Theorem 2.3.1. Let Ω ⊂ Z
n be a finite set such that KΛ ⊂ Q+ Ω. Let E be

a nonempty closed subset of (Cr)Ω such that Td(E) ⊂ E for each d ∈ D. Let V

be a subspace of (Cr)Ω which contains E −E and which is right-invariant under

each Td. Define

F =
{
g ∈ L∞(Rn,Cr) : supp(g) ⊂ KΛ and Φg(Q) ⊂ E

}
. (2.3.9)

If F 6= ∅ and ρ̂({Td|V }d∈D) < 1, then there exists a function f ∈ F which is a

solution to the refinement equation (2.3.1), and the cascade algorithm f (i+1) =

Sf (i) converges uniformly to f for each starting function f (0) ∈ F . Furthermore,

if there exists any continuous function f (0) ∈ F , then f is continuous.
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Proof: We will apply Theorem 2.2.1 with X = Q and with E the specified

subset of (Cr)Ω. We let wd, ϕd, O, and T be as defined above, specifically, by

equations (2.3.3), (2.3.4), (2.3.5), and (2.3.6).

We will show that the hypotheses of Theorem 2.1 are satisfied. First, wd(x) =

A−1(x+ d) is clearly injective and continuously differentiable.

Second, let δ be any number such that

ρ̂({Td|V }d∈D) < δ < 1.

Then by Proposition 2.3.2 applied to the matrices Td|V , there exists a vector

norm ‖ · ‖V on V such that

max
d∈D

‖Tdw‖V ≤ δ ‖w‖V , all w ∈ V.

Let ‖ · ‖ denote any extension of this norm to all of (Cr)Ω. Recall that ϕd(x, e) =

Tde. Since E −E ⊂ V , we therefore have for each x ∈ Q and u, v ∈ E that

max
d∈D

‖ϕd(x, u) − ϕd(x, v)‖ = max
d∈D

‖Td(u− v)‖ ≤ δ ‖u− v‖.

Therefore the functions ϕd satisfy the condition (2.2.3) with constant C = δ. It

is easy to check that each ϕd is stable.

Finally, O is non-expansive. Thus, the hypotheses of Theorem 2.2.1 are satis-

fied. Since C < 1, Theorem 2.2.1 implies that T maps L∞(Q,E) into itself, and

satisfies

‖Tu − Tv‖ ≤ C ‖u − v‖.

It follows that T is contractive on L∞(Q,E) and there exists a unique func-

tion v∗ ∈ L∞(Q,E) such that Tv∗ = v∗. Further, the iteration v(i+1) = Tv(i)

converges in L∞(Q,E) to v∗ for each function v(0) ∈ L∞(Q,E).

We want to relate now the fixed point v∗ for T to a solution to the refinement

equation. First, it can be shown that the space F is invariant under the refinement

operator S. Hence, by Proposition 2.3.1, the following diagram commutes, with

T in particular being a contraction:

F Φ−−−−−→ L∞(Q,E)

S

y yT

F −−−−−→
Φ

L∞(Q,E).

Now suppose that f (0) is any function in F , and define f (i+1) = Sf (i). Then

f (i) ∈ F for each i, and if we set v(i) = Φf (i), then

v(i+1) = Φf (i+1) = ΦSf (i) = TΦf (i) = Tv(i),

so v(i) must converge uniformly to v∗. By choosing an appropriate choice of

norm on F (see [5]), it follows that f (i) converges uniformly to some function
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f ∈ L∞(Rn,Cr). We must have f ∈ F since F is a closed subset of L∞(Rn,Cr).

Further,

Φf = v∗ = Tv∗ = TΦf = ΦSf a.e.

Therefore f satisfies the refinement equation (2.3.1) almost everywhere. Since

v∗ is unique, the cascade algorithm must converge to this particular f for any

starting function f (0) ∈ F . It only remains observe that if any f (0) ∈ F is

continuous, then the iterates f (i) obtained from f (0) are continuous and converge

uniformly to f , so f must itself be continuous.

¿From the proof of the above theorem, it is clear that the rate of conver-
gence of the cascade algorithm is geometric and can be specified explicitly
if desired.

The preceding theorem immediately suggests two questions:

• Does there always exist a space E which is invariant for all Td?

• Does F always contain a continuous function?

The answer to both of these questions is yes, under some mild additional
hypotheses.

To answer the question of the existence of the space E, let us recall
the one-dimensional, single-function case. In this setting, if we impose the
standard “minimal accuracy condition”∑

k∈Z

c2k =
∑
k∈Z

c2k+1 = 1, (2.3.10)

then E is the hyperplane through (1, 0, . . . , 0) that is orthogonal to the row
vector (1, 1, . . . , 1). This vector is a common left eigenvector to all of the
matrices Td [8]. The minimal accuracy condition is so-called because it is
directly related to the accuracy of the solution f . In n-dimensions with
multiplicity r, i.e., with f : Rn → Cr, the accuracy of f is defined to be the
largest integer κ > 0 such that every polynomial q(x) = q(x1, . . . , xn) with
deg(q) < κ can be written

q(x) =
∑

k∈Zn

akf(x + k) =
∑

k∈Zn

r∑
i=1

ak,ifi(x + k) a.e., x ∈ R
n,

for some row vectors ak = (ak,1, . . . , ak,r) ∈ C1×r. If no polynomials are
reproducible from translates of f then we set κ = 0. We say that f has
at least minimal accuracy if the constant polynomial is reproducible from
translates of f , i.e., if κ ≥ 1. We say that translates of f along Zn are
linearly independent if

∑
k∈Zn akf(x + k) = 0 implies ak = 0 for each k.

In one dimension, under the hypotheses of linear independence of trans-
lates, the minimal accuracy condition (2.3.10) implies that f has at least
minimal accuracy. In the general setting of n dimensions and multiplicity
r, the minimal accuracy condition is more complicated to formulate than
(2.3.10). However, this condition is still the appropriate tool to construct
an appropriate set E. We present here a weak form of the minimal accuracy
condition, and refer to [4] for a general result.
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Theorem 2.3.2. Let f : R
n → C

r be an integrable, compactly supported so-

lution of the refinement equation (2.3.1), such that translates of f along Z
n are

linearly independent. Then the following statements are equivalent.

a) f has accuracy κ ≥ 1.

b) There exists a row vector u0 ∈ C
1×r such that u0f̂(0) 6= 0 and

u0 =
∑

k∈Γd

u0 ck for each d ∈ D.

In the case that either statement holds, we have∑
k∈Γ

u0f(x+ k) = 1 a.e.

Assume now that the minimal accuracy condition given in Theorem 2.3.2
is satisfied, and let u0 be the row vector such that

∑
k∈Zn u0f(x+k) = 1 a.e.

It can be shown that the inclusions supp(f) ⊂ KΛ ⊂ Q + Ω imply that if
x ∈ Q, then the only nonzero terms in the series

∑
k∈Zn u0f(x + k) = 1

occur when k ∈ Ω. Hence, if we set e0 = (u0)k∈Ω, i.e., e0 is the row vector
obtained by repeating the block u0 once for each k ∈ Ω, then

e0Φf(x) =
∑
k∈Ω

u0f(x + k) =
∑

k∈Zn

u0f(x + k) = 1 a.e., for x ∈ Q.

Thus the values of Φf(x) are constrained to lie in a particular hyperplane
E0 in (Cr)Ω, namely, the collection of column vectors v = [vk]k∈Ω such
that e0v =

∑
k∈Ω u0vk = 1. This hyperplane E0 is a canonical choice

for the set E appearing in the hypotheses of Theorem 2.3.1. In order to
invoke Theorem 2.3.1, the starting functions f (0) for the cascade algorithm
should therefore also have the property that Φf (0)(x) always lies in this
hyperplane E0. Note that with this definition of E0, the set of differences
V0 = E0 − E0 is the subspace consisting of vectors v = [vk]k∈Ω such that
e0v =

∑
k∈Ω u0vk = 0. Hence the minimal accuracy condition immediately

provides an appropriate choice for the space E, namely, we take E = E0.
Now, having defined E = E0, we are ready to address the second ques-

tion, whether the set F defined by (2.3.9) always contains a continuous
function. First we rewrite F as

F =
{

g ∈ L∞(Rn, Cr) : supp(g) ⊂ KΛ and
∑

k∈Zn

u0g(x + k) = 1
}
,

and note that this set is determined by two quantities: the set Λ and the
row vector u0. The set Λ is the support of the set of coefficients ck in
the refinement equation and is determined only by the location of the ck

and not their values. The vector u0, on the other hand, is determined by
the values of the ck as well as their locations. However, it can be shown
that, in fact, the question of whether F contains a continuous function
is determined solely by Λ and not by u0. Thus only the location of the
coefficients ck is important for this question, and not their actual values.
This is made precise in the following result [5].
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Lemma 2.3.1. Let Λ ⊂ Z
n be finite, and let u0 be a nonzero row vector in

C
1×r. Then the following statements are equivalent.

a) F 6= ∅.
b) F contains a continuous function.

c) K◦
Λ + Z

n = R
n, i.e., lattice translates of the interior K◦

Λ of KΛ cover R
n.

Thus, in designing a multiwavelet system, after choosing the dilation
matrix A and digit set D, the next step is to choose a set Λ which fulfills
the requirements of Lemma 2.3.1. Small Λ are preferable, since the larger
Λ is, the larger the matrices Td will be, and the more computationally
difficult the computation of the joint spectral radius becomes. While we
expect that some “small” Λ may fail the requirement K◦

Λ + Zn = Rn, it is
not true that all “large” Λ will necessarily satisfy this requirement (see [5]
for an example).

In summary, once we impose the minimal accuracy condition and choose
an appropriate set Λ, in order to check for the existence of a continu-
ous scaling function we must evaluate the uniform joint spectral radius
ρ̂({Td|V0}d∈D). Unfortunately, this might involve the computation of prod-
ucts of large matrices. It can be shown that if the coefficients ck satisfy
the conditions for higher-order accuracy, then V0 is only the largest of a
decreasing chain of common invariant subspaces

V0 ⊃ V1 ⊃ · · · ⊃ Vκ−1

of the matrices Td, and that, as a consequence, the value of ρ̂({Td|V0}d∈D)
is determined by the value of ρ̂({Td|Vκ−1}d∈D) [5]. This reduction in dimen-
sion can ease the computational burden of approximating the joint spectral
radius. Moreover, these invariant spaces Vs are directly determined from
the coefficients ck via the accuracy conditions, which are a system of linear
equations. Hence it is a simple matter to compute the matrices Td|Vκ−1 .
Additionally, the fact that accuracy implies such specific structure in the
matrices Td suggests that this structure could potentially be used to de-
velop theoretical design criteria for multiwavelet systems.

A final question concerns the converse of Theorem 2.3.1, namely, what
can we say if after choosing coefficients ck that satisfy the minimal accu-
racy condition, the joint spectral radius of ρ̂({Td|V0}d∈D) exceeds 1? The
following theorem answers this question, and is somewhat surprising be-
cause it essentially says that if a given operator has a fixed point, then
that operator must necessarily be contractive. This theorem is proved in
this generality in [5], but is inspired by a one-dimensional theorem of Wang
[17].

Theorem 2.3.3. Let f be a continuous, compactly supported solution to the

refinement equation (2.3.1) such that f has L∞-stable translates (defined below).

Assume that there exists a row vector u0 ∈ C
1×r such that

u0f̂(0) 6= 0 and u0 =
∑

k∈Γd

u0 ck for d ∈ D.

If Ω ⊂ Z
n is any set such that
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KΛ ⊂ Q+ Ω and A−1(Ω + Λ −D) ∩ Z
n ⊂ Ω,

then

ρ̂({Td|V0}d∈D) < 1.

Here, we say that a vector function g ∈ L∞(Rn, Cr) has L∞-stable trans-
lates if there exist constants C1, C2 > 0 such that

C1 sup
k∈Γ

max
i

|ak,i| ≤
∥∥∥∥∑

k∈Γ

ak g(x + k)
∥∥∥∥

L∞
≤ C2 sup

k∈Γ
max

i
|ak,i|

for all sequences of row vectors ak = (ak,1, . . . , ak,r) with only finitely many
ak nonzero.

2.4 Existence of MRAs

In this section we turn to the problem of using the existence of a solution
to the refinement equation to construct orthonormal multiwavelet bases
for L2(Rn). As in the classical one-dimensional, single-function theory, the
key point is that a vector scaling function which has orthonormal lattice
translates determines a multiresolution analysis for Rn. The multiresolution
analysis then, in turn, determines a wavelet basis for L2(Rn).

The main novelty here, more than allowing more than one scaling func-
tion or working in arbitrary dimensions, is the result of having an arbitrary
dilation matrix. The viewpoint of self-similarity and iterated function sys-
tems still leads naturally to the correct decompositions [5].

Definition 2.4.1. A multiresolution analysis (MRA) of multiplicity r as-

sociated with a dilation matrix A is a sequence of closed subspaces {V j}j∈Z of

L2(Rn) which satisfy:

P1. V j ⊂ V j+1 for each j ∈ Z,

P2. g(x) ∈ V j ⇐⇒ g(Ax) ∈ V j+1 for each j ∈ Z,

P3.
⋂

j∈Z

V j = {0},

P4.
⋃

j∈Z

V j is dense in L2(Rn), and

P5. there exist functions ϕ1, . . . , ϕr ∈ L2(Rn) such that the collection of lattice

translates

{ϕi(x− k)}k∈Zn, i=1,...,r

forms an orthonormal basis for V0.

If these conditions are satisfied, then the vector function ϕ = (ϕ1, . . . , ϕr)
T is

referred to as a vector scaling function for the MRA.

The usual technique for constructing a multiresolution analysis is to start
from a vector function ϕ = (ϕ1, . . . , ϕr)T such that {ϕi(x−k)}k∈Zn, i=1,...,r
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is an orthonormal system in L2(Rn), and then to construct the subspaces
Vj ⊂ L2(Rn) as follows. First, let V0 be the closed linear span of the
translates of the component functions ϕi, i.e.,

V0 = span{ϕi(x − k)}k∈Zn, i=1,...,r. (2.4.1)

Then, for each j ∈ Z, define Vj to be the set of all dilations of functions in
V0 by Aj , i.e.,

Vj = {g(Ajx) : g ∈ V0}. (2.4.2)
If {Vj}j∈Z defined in this way forms a multiresolution analysis for L2(Rn)
then we say that it is the MRA generated by ϕ.

Example 2.4.1. In one dimension, the box function ϕ = χ[0,1) generates a

multiresolution analysis for L2(R). This MRA is usually referred to as the Haar

multiresolution analysis, because the wavelet basis it determines is the classical

Haar system {2n/2ψ(2nx− k)}n,k∈Z, where ψ = χ[0,1/2) − χ[1/2,1).

Gröchenig and Madych [10] proved that there is a Haar-like multiresolu-
tion analysis associated to each choice of dilation matrix A and digit set D
for which the attractor Q = KD is a tile. In particular, they proved that if
Q is a tile then the scalar-valued function χQ generates a multiresolution
analysis of L2(Rn) of multiplicity 1. By extension of the one-dimensional
terminology, this MRA is called the Haar MRA associated with A and D.
Note that the fact that {χQ(x− k)}k∈Γ forms an orthonormal basis for V0

is a restatement of the assumption that the lattice translates of the tile Q
have overlaps of measure zero. Further, χQ is refinable because Q is self-
similar and because the lattice translates of Q have overlaps of measure
zero.

We will characterize those ϕ which generate multiresolution analyses in
the following theorem. To motivate this result, note that property P2 is
achieved trivially when Vj is defined by (2.4.2). Moreover, property P5
is simply a statement that lattice translates of ϕ are orthonormal. It can
be seen [5] that the fact that ϕ has orthonormal lattice translates implies
that property P3 is also automatically satisfied. Thus, the main problem in
determining whether ϕ generates a multiresolution analysis is the question
of when properties P1 and P4 are satisfied. One necessary requirement for
P1 is clear. If ϕ does generate a multiresolution analysis, then P1 implies
that ϕi ∈ V0 ⊂ V1 for i = 1, . . . , r. Since P2 and P5 together imply that
{m1/2 ϕj(Ax − k)}k∈Zn, j=1,...,r forms an orthonormal basis for V1, each
function ϕi must therefore equal some (possibly infinite) linear combination
of the functions ϕj(Ax − k). Consequently, the vector function ϕ must
satisfy a refinement equation of the form

ϕ(x) =
∑

k∈Zn

ck ϕ(Ax − k) (2.4.3)

for some choice of r× r matrices ck. Since we only consider the case where
the functions ϕi have compact support and since ϕ has orthonormal lattice
translates, this implies that only finitely many of the matrices ck in (2.4.3)
can be nonzero. Hence, in this case the refinement equation in (2.4.3) has
the same form as the refinement equation (2.3.1).



2. Multiwavelets in Rn with an arbitrary dilation matrix 37

Theorem 2.4.1. Assume that ϕ = (ϕ1, . . . , ϕr)
T ∈ L2(Rn,Cr) is compactly

supported and has orthonormal lattice translates, i.e.,

〈
ϕi(x− k), ϕj(x− `)

〉
=

∫
ϕi(x− k)ϕj(x− `) dx = δi,j δk,`.

Let V j ⊂ L2(Rn) for j ∈ Z be defined by (2.4.1) and (2.4.2). Then the following

statements hold.

a) Properties P2, P3, and P5 are satisfied.

b) Property P1 is satisfied if and only if ϕ satisfies a refinement equation of

the form

ϕ(x) =
∑
k∈Λ

ck ϕ(Ax− k) (2.4.4)

for some r × r matrices ck and some finite set Λ ⊂ Z
n.

c) If
r∑

i=1

|ϕ̂i(0)|2 =

r∑
i=1

∣∣∣∣
∫
ϕi(x) dx

∣∣∣∣
2

= |Q| = 1, (2.4.5)

then Property P4 is satisfied. If ϕ is refinable, i.e., if (2.4.4) holds, then

Property P4 is satisfied if and only if (2.4.5) holds.

Note that the assumption that ϕi is square-integrable and compactly
supported implies that ϕi ∈ L1(Rn), so ϕ̂i(0) =

∫
ϕi(x) dx is well-defined.

Theorem 2.4.1 generalizes a result of Cohen [7], which applied specifically
to the case of multiplicity 1 and dilation A = 2I. Cohen’s estimates used
a decomposition of Rn into dyadic cubes, making essential use of the fact
that the uniform dilation A = 2I maps dyadic cubes into dyadic cubes.
However, this need not be true for an arbitrary dilation matrix A, so this
particular decomposition is no longer feasible. Instead, the proof in [5] uses
a decomposition based on the tile Q and the associated Haar multiresolu-
tion analysis discussed in Example 2.4.1. One of the key observations lies
in counting the number of lattice translates of Q which lie in the interior of
a dilated tile AjQ, j ≥ 1. The fact that Q is self-similar combined with the
fact that translates of Q tile Rn with overlaps with measure zero implies
that AjQ is a union of exactly mj translates of Q, with each such trans-
late lying entirely inside AjQ (but not necessarily in the interior of AjQ).
It can be shown that the ratio of the number of those translates Q + k
that intersect the boundary of AjQ to the total number lying inside AjQ
converges to zero.

We conclude by showing in Figure 2.2 a pair of wavelets associated to
a MRA obtained by numerically solving the “accuracy 2” conditions given
in [4] to obtain the coefficients ck for a scaling vector ϕ : R2 → R2 with
orthonormal lattice translates that is refinable with respect to a quincunx
dilation matrix (these numerical estimates were obtained by A. Ruedin,
see [16] for related results). Using the results outlined in this paper, one
can prove that these coefficients yield a continuous scaling vector which
generates a MRA whose “mother wavelets” are those pictured in Figure 2.2.
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FIGURE 2.2. Wavelets ψ1, ψ2
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