
FUNCTIONAL ANALYSIS LECTURE NOTES:

WEAK AND WEAK* CONVERGENCE

CHRISTOPHER HEIL

1. Weak and Weak* Convergence of Vectors

Definition 1.1. Let X be a normed linear space, and let xn, x ∈ X.

a. We say that xn converges, converges strongly, or converges in norm to x, and write
xn → x, if

lim
n→∞

‖x− xn‖ = 0.

b. We say that xn converges weakly to x, and write xn
w
→x, if

∀µ ∈ X∗, lim
n→∞

〈xn, µ〉 = 〈x, µ〉.

Exercise 1.2. a. Show that strong convergence implies weak convergence.

b. Show that weak convergence does not imply strong convergence in general (look for a
Hilbert space counterexample).

If our space is itself the dual space of another space, then there is an additional mode of
convergence that we can consider, as follows.

Definition 1.3. Let X be a normed linear space, and suppose that µn, µ ∈ X∗. Then we

say that µn converges weak* to µ, and write µn
w*
−→µ, if

∀x ∈ X, lim
n→∞

〈x, µn〉 = 〈x, µ〉.

Note that weak* convergence is just “pointwise convergence” of the operators µn!

Remark 1.4. Weak* convergence only makes sense for a sequence that lies in a dual
space X∗. However, if we do have a sequence {µn}n∈N in X∗, then we can consider three
types of convergence of µn to µ: strong, weak, and weak*. By definition, these are:

µn → µ ⇐⇒ lim
n→∞

‖µ− µn‖ = 0,

µn
w
→µ ⇐⇒ ∀T ∈ X∗∗, lim

n→∞
〈µn, T 〉 = 〈µ, T 〉,

µn
w*
−→µ ⇐⇒ ∀x ∈ X, lim

n→∞
〈x, µn〉 = 〈x, µ〉.
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Exercise 1.5. Given µn, µ ∈ X∗, show that

µn → µ =⇒ µn
w
→µ =⇒ µn

w*
−→µ. (1.1)

If X is reflexive, show that

µn
w
→µ ⇐⇒ µn

w*
−→µ.

In general, however, the implications in (1.1) do not hold in the reverse direction.

Lemma 1.6. a. Weak* limits are unique.

b. Weak limits are unique.

Proof. Suppose that X is a normed linear space, and that we had both µn
w*
−→µ and µn

w*
−→ ν

in X∗. Then, by definition,

∀x ∈ X, 〈x, µ〉 = lim
n→∞

〈x, µn〉 = 〈x, ν〉,

so µ = ν.

b. Suppose that we have both xn
w
→x and xn

w
→ y in X. Then, by definition,

∀µ ∈ X∗, 〈x, µ〉 = lim
n→∞

〈xn, µ〉 = 〈y, µ〉.

Hence, by Hahn–Banach,

‖x− y‖ = sup
‖µ‖=1

|〈x− y, µ〉| = 0,

so x = y. �

It is trivial to show that strongly convergent sequences are bounded. However, we need
some fairly sophisticated machinery (the Uniform Boundedness Principle) to show that
weakly convergent and weak* convergent sequences are likewise bounded.

Exercise 1.7. a. Show that weak* convergent sequences in the dual of a Banach space are
bounded.

Give an example of an unbounded but weak* convergence sequence in the dual of an
incomplete normed space.

Hint: The dual space of c00 under the ℓ∞ norm is (c00)
∗ ∼= ℓ1.

b. Show that weakly convergent sequences in a normed space are bounded.

Next, we will show that strong convergence is equivalent to weak convergence in finite-
dimensional spaces.

Lemma 1.8. If X is a finite-dimensional vector space, then strong convergence is equivalent
to weak convergence.
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Proof. Consider first the case that X = F
d under the Euclidean norm ‖ · ‖2. Suppose that

xn
w
→x in F

d. Then for each standard basis vector ek, we have

xn · ek → x · ek, k = 1, . . . , d.

That is, weak convergence implies componentwise convergence. But since there are only
finitely many components, this implies norm convergence, since

‖x− xn‖
2

2 =

d
∑

k=1

|x · ek − xn · ek|
2 → 0 as n→ ∞.

For the general case, choose any basis B = {e1, . . . , ed} for X, and use the fact that all
norms on X are equivalent to define an isomorphism between X and F

d. �

Often, there exists a connection between componentwise or pointwise convergence and
weak convergence. This is related to the question of whether “point evaluation” are contin-
uous linear functionals on a given space.

Example 1.9. Fix 1 ≤ p ≤ ∞, and consider the space ℓp. As usual, given x ∈ ℓp and
y ∈ ℓp

′

, write

〈x, y〉 =
∞

∑

k=1

xk ȳk.

The standard basis vectors ek belong to every ℓp, and hence ek ∈ ℓp
′

⊆ (ℓp)∗ (with equality
if p < ∞). Therefore, if we have xn = (xn(k))k∈N and y = (y(k))k∈N and we know that

xn
w
→ y, then we have for each k ∈ N that

xn(k) = 〈xn, ek〉 → 〈y, ek〉 = y(k).

Thus,

weak convergence in ℓp =⇒ componentwise convergence in ℓp.

The converse is not true in general, but the following result gives necessary and sufficient
conditions, at least for some p.

Exercise 1.10. Fix 1 < p < ∞, and let xn, y ∈ ℓp be given. Prove that the following two
statements are equivalent.

a. xn
w
→ y.

b. xn(k) → y(k) for each k (componentwise convergence) and sup ‖xn‖p <∞.

What happens if p = 1 or p = ∞?

Exercise 1.11. Suppose that xn, y ∈ ℓ1 are given. Since ℓ1 ∼= c∗0, we can consider weak*
convergence of xn to y. Prove that the following two statements are equivalent.

a. xn
w*
−→ y.
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b. xn(k) → y(k) for each k (componentwise convergence) and sup ‖xn‖1 <∞.

Exercise 1.12. Let fn, f ∈ C0(R) be given. Since C0(R)∗ ∼= Mb(R), we can consider weak
convergence of fn to f . Prove that the following two statements are equivalent.

a. fn
w
→ f .

b. fn(x) → f(x) pointwise for each x, and sup ‖fn‖∞ <∞.

Exercise 1.13. Let µn, µ ∈ Mb(R) be given. Show that µn
w*
−→µ does not imply ‖µn‖ →

‖µ‖.

Exercise 1.14. Fix 1 < p <∞, and let fn ∈ Lp(R) be given. Prove that the following two
statements are equivalent.

a. fn
w
→ 0.

b.
∫

E
fn → 0 for every E ⊆ R with |E| <∞, and sup ‖fn‖p <∞.

Proof. b ⇒ a. Suppose that statement b holds, and let R = sup ‖fn‖p. Choose any g ∈
Lp′(R). Since the step functions are dense in Lp′(R), we can find a function of the norm

ϕ =

M
∑

k=1

ckχFk
,

with each Fk a measurable subset of R, such that

‖g − ϕ‖p′ <
ε

4R
.

Since ϕ ∈ Lp′(R), there exists a compact set K such that if we set ψ = ϕχK , then we have

‖ϕ− ψ‖p′ <
ε

4R
.

Furthermore, note that ψ is a step function, since

ψ =

M
∑

k=1

ckχFk

χ
K =

M
∑

k=1

ckχEk
,

where Ek = Fk ∩K.
Set

C =

M
∑

k=1

|ck|,

and assume for now that C > 0. Since each Ek has finite measure, by hypothesis we can
find an integer N such that

n > N =⇒

∣

∣

∣

∣

∫

Ek

fn

∣

∣

∣

∣

<
ε

2C
.
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Hence for n > N we have

|〈g, fn〉| ≤ |〈g − ϕ, fn〉| + |〈ϕ− ψ, fn〉| + |〈ψ, fn〉|

< ‖g − ϕ‖ ‖fn‖| + ‖ϕ− ψ‖ ‖fn‖ +

∣

∣

∣

∣

∫ M
∑

k=1

ckχEk
fn

∣

∣

∣

∣

<
ε

4R
R+

ε

4R
R+

M
∑

k=1

|ck|

∣

∣

∣

∣

∫

Ek

fn

∣

∣

∣

∣

<
ε

4
+
ε

4
+

M
∑

k=1

|ck|
ε

2C

= ε.

If C = 0 then we still obtain |〈g, fn〉| < ε. This shows that

0 ≤ lim sup
n→∞

|〈g, fn〉| ≤ ε.

Since this is true for every ε, we conclude that

lim
n→∞

|〈g, fn〉| = 0.

And since this is true for every g ∈ Lp′(R), we have fn
w
→ 0. �

Exercise 1.15. Let H be a Hilbert space. Show that

fn → f ⇐⇒ fn
w
→ f and ‖fn‖ → ‖f‖.

Exercise 1.16. Let H andK be Hilbert spaces, and let T ∈ B(H,K) be a compact operator.
Show that

fn
w
→ f =⇒ Tfn → Tf.

Thus, a compact operator maps weakly convergent sequences to strongly convergent se-
quences.
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2. Convergence of Operators

We can apply similar notions to convergence of operators.

Definition 2.1. Let X, Y be normed linear spaces, and let An, A ∈ B(X, Y ) be given.

a. We say that An converges in operator norm to A, or that An is uniformly operator
convergent to A, and write An → A, if

lim
n→∞

‖A− An‖ = 0.

Rewriting the definition of operator norm, this is equivalent to

lim
n→∞

(

sup
‖x‖=1

‖Ax− Anx‖

)

= 0.

b. We say that An converges in the strong operator topology (SOT) to A, or that An is
strongly operator convergent to A, if

∀x ∈ X, Anx→ Ax (strong convergence in Y ).

Equivalently, this holds if

∀x ∈ X, lim
n→∞

‖Ax− Anx‖ = 0.

c. We say that An is weakly operator convergent to A, if

∀x ∈ X, Anx
w
→Ax (weak convergence in Y ).

Equivalently, this holds if

∀x ∈ X, ∀µ ∈ Y ∗, lim
n→∞

〈Anx, µ〉 = 〈Anx, µ〉.

Remark 2.2. In particular, consider the case Y = F, i.e., the operators An are bounded
linear functionals on X. Since Y = Y ∗, strong and weak convergence in Y are equiva-
lent. Hence for this case, strong operator convergence and weak operator convergence are
equivalent, and in fact, they are simply weak* convergence of the operators An in X∗. Fur-
ther, uniform operator convergence is simply operator norm convergence of the operators An

in X∗.


