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1. Cosets and the Quotient Space

Any vector space is an abelian group under the operation of vector addition. So, if you are
have studied the basic notions of abstract algebra, the concept of a coset will be familiar to
you. However, even if you have not studied abstract algebra, the idea of a coset in a vector
space is very natural: it is just a translate of a subspace.

Example 1.1 (Cosets in R2). Consider the vector space X = R2. Let M be any one-
dimensional subspace of R2, i.e., M is a line in R2 through the origin. A coset of M is a
rigid translate of M by a vector in R2. For concreteness, let us consider the case where M
is the x1-axis in R2, i.e.,

M = {(x1, 0) : x1 ∈ R}.
Then given a vector y = (y1, y2) ∈ R2, the coset y +M is the set

y +M = {y +m : m ∈M} = {(y1 + x1, y2 + 0) : x1 ∈ R} = {(x1, y2) : x1 ∈ R},
which is the horizontal line at height y2. This is not a subspace of R2, but it is a rigid
translate of the x1-axis. Note that there are infinitely many different choices of y that give
the same coset. Furthermore, we have the following facts for this particular setting.

(a) Two cosets of M are either identical or entirely disjoint.

(b) The union of the cosets is all of R2.

(c) The set of distinct cosets is a partition of R2.

The preceding example is entirely typical.

Definition 1.2 (Cosets). Let M be a subspace of a vector space X. Then the cosets of M
are the sets

f +M = {f +m : m ∈M}, f ∈ X.

Exercise 1.3. Let X be a vector space, and let M be a subspace of X. Given f , g ∈ X,
define f ∼ g if f − g ∈M . Prove the following.

(a) ∼ is an equivalence relation on X.
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(b) The equivalence class of f under the relation ∼ is [f ] = f +M .

(c) If f , g ∈M then either f +M = g +M or (f +M) ∩ (g +M) = ∅.
(d) f +M = g +M if and only if f − g ∈M .

(e) f +M = M if and only if f ∈M .

(f) If f ∈ X and m ∈M then f +M = f +m+M .

(g) The set of distinct cosets of M is a partition of X.

Definition 1.4 (Quotient Space). If M is a subspace of a vector space X, then the quotient
space X/M is

X/M = {f +M : f ∈ X}.

Since two cosets of M are either identical or disjoint, the quotient space X/M is the set
of all the distinct cosets of M .

Example 1.5. Again let M = {(x1, 0) : x1 ∈ R} be the x1-axis in R2. By definition,

R2/M = {y +M : y ∈ R2},
but many of the cosets y+M coincide. One way to write the quotient space R2/M without
duplicates is as:

R2/M = {(0, y2) +M : y2 ∈ R}.
We see that R2/M is the set of all horizontal lines in R2. This quotient space is in 1-1
correspondence with the set of distinct heights, i.e., there is a natural bijection of R2/M
onto R. This is a special case of a more general fact that we will explore later.

Next we define two natural operations on the set of cosets: addition of cosets and multi-
plication of a coset by a scalar. These are defined formally as follows.

Definition 1.6. Let M be a subspace of a vector space X. Given f , g ∈ X, define addition
of cosets by

(f +M) + (g +M) = (f + g) +M.

Given f ∈ X and c ∈ F, define scalar multiplication by

c(f +M) = cf +M.

Remark 1.7. Before proceeding, we must show that these operations are actually well-
defined. After all, there need not be just one f that determines the coset f + M—how do
we know that if we choose different vectors that determine the same cosets, we will get the
same result when we compute (f + g) + M? We must show that f1 + M = f2 + M and
g1 +M = g2 +M then (f1 + g1) +M = (f2 + g2) +M in order to know that Definition 1.6
makes sense.

Proposition 1.8. If M is a subspace of a vector space X, then the addition of cosets of M
given in Definition 1.6 is well-defined.
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Proof. Suppose that f1 + M = f2 + M and g1 + M = g2 + M . Then by Exercise 1.3(d)
we know that f1 − f2 = k ∈ M and g1 − g2 = l ∈ M . If h ∈ (f1 + g1) + M then we have
h = f1 + g1 +m for some m ∈M . Hence

h = (f2 + k) + (g2 + l) +m = (f2 + g2) + (k + l +m) ∈ (f2 + g2) +M.

Thus (f1 + g1) +M ⊆ (f2 + g2) +M , and the converse inclusion is symmetric. �

Exercise 1.9. Show that scalar multiplication is likewise well-defined.

Now we can show that the quotient space is actually a vector space under the operations
just defined.

Proposition 1.10. If M is a subspace of a vector space X, then X/M is a vector space
with respect to the operations given in Definition 1.6.

Proof. Addition of cosets is commutative because

(f +M) + (g +M) = (f + g) +M = (g + f) +M = (g +M) + (f +M).

The zero vector in X/M is the coset 0+M = M , because (f+M)+(0+M) = (f+0)+M =
f +M .

Exercise: Show that the remaining axioms of a vector space are satisfied. �

Definition 1.11 (Codimension). If M is a subspace of a vector space X, then the codimen-
sion of M is the vector space dimension of X/M , i.e.,

codim(M) = dim(X/M).

Example 1.12. Let C(R) be space of continuous functions on R, and let P be the subspace
containing the polynomials. Given f ∈ C(R), the coset determined by f is

f + P = {f + p : p is a polynomial}.

Further, f + P = g + P if and only if f − g is a polynomial. Thus, f + P can be thought
of as “f modulo the polynomials,” i.e., it is the equivalence class obtained by identifying
functions which differ by a polynomial.

In the same way, a coset f + M can be thought of as the equivalence class obtained by
identifying vectors which differ by an element of M . We can imagine the mapping that takes
f to f +M as “collapsing information modulo M .”
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2. The Canonical Projection

Definition 2.1. If M is a subspace of a vector space X, then the canonical projection or
the canonical mapping of X onto X/M is π : X → X/M defined by

π(f) = f +M, f ∈ X.

Exercise 2.2. Let M be a subspace of a vector space X.

(a) Prove that the canonical projection π is linear.

(b) Prove that π is surjective and ker(π) = M .

(c) Prove that if E ⊆ X, then the inverse image of π(E) is

π−1
(
π(E)

)
= E +M = {u+m : u ∈ E,m ∈M}.

We will mostly be interested in the case where X is a normed space. The following result
shows that X/M is a semi-normed space in general, and is a normed space if M is closed.

Proposition 2.3. Let M be a subspace of a normed linear space X. Given f ∈ X, define

‖f +M‖ = dist(f,M) = inf
m∈M

‖f −m‖.

Then the following statements hold.

(a) ‖ · ‖ is well-defined.

(b) ‖ · ‖ is a semi-norm on X/M .

(c) If M is closed, then ‖ · ‖ is a norm on X/M .

Proof. (a), (b) Exercises.

(c) Suppose that M is closed, and that ‖f + M‖ = 0. Then infm∈M ‖f −m‖ = 0. Hence
there exist vectors gn ∈ M such that ‖f − gn‖ → 0 as n → ∞. But M is closed, so this
implies f ∈ M . By Exercise 1.3(e), we therefore have f + M = M = 0 + M , which is the
zero vector in X/M . �

In the Hilbert space case, there is a very close relationship between π and the orthogonal
projection of H onto M⊥.

Exercise 2.4. Let M be a closed subspace of a Hilbert space H, and let π be the canonical
projection of H onto H/M . Prove that the restriction of π to M⊥ is an isometric isomorphism
of M⊥ onto H/M .

Remark 2.5. There is no analog of the preceding result for arbitrary Banach spaces. If X
is a Banach space and M is a closed subspace then we say that M is complemented in X if
there exists another closed subspace N such that M ∩N = {0} and M +N = X.

It is not true that every closed subspace of every Banach space is complemented. In
particular, c0 is not complemented in `∞. Also, if 1 < p ≤ ∞ and p 6= 2, then `p has
uncomplemented subspaces.
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Now we derive some basic properties of the canonical projection π of X onto X/M .

Proposition 2.6. Let M be a closed subspace of a normed linear space X. Then the
following statements hold.

(a) π is continuous, with ‖π(f)‖ = ‖f +M‖ ≤ ‖f‖ for each f ∈ X.

(b) Let BX
r (f) denote the open ball of radius r in X centered at f , and let B

X/M
r (f +M)

denote the open ball of radius r in X/M centered at f + M . Then for any f ∈ X
and r > 0 we have

π
(
BX
r (f)

)
= BX/M

r (f +M).

(c) W ⊆ X/M is open in X/M if and only if π−1(W ) = {f ∈ X : f + M ∈ W} is open
in X.

(d) π is an open mapping, i.e., if U is open in X then π(U) is open in X/M .

Proof. (a) Choose any f ∈ X. Since 0 is one of the elements of M , we have

‖π(f)‖ = ‖f +M‖ = inf
m∈M

‖f −m‖ ≤ ‖f − 0‖ = ‖f‖.

(b) First consider the case f = 0 and r > 0. Suppose that g + M ∈ π
(
BX
r (0)

)
. Then

g +M = h+M for some h ∈ BX
r (0), i.e., ‖h‖ < r. Hence ‖g +M‖ = ‖h+M‖ ≤ ‖h‖ < r,

so g +M ∈ BX/M
r (0 +M).

Now suppose that g +M ∈ BX/M
r (0 +M). Then infm∈M ‖g −m‖ = ‖g +M‖ < r. Hence

there exists m ∈M such that ‖g −m‖ < r. Thus g −m ∈ BX
r (0), so

g +M = g −m+M = π(g −m) ∈ π
(
BX
r (0)

)
.

Exercise: Show that statement (b) holds for an arbitrary f ∈ X.

(c) ⇒. Part (a) implies that π is continuous. Hence π−1(W ) must be open in X if W is
open in X/M .

⇐. Suppose that W is a subset of X/M such that π−1(W ) is open in X. We must show
that W is open in X/M . Choose any point f + M ∈ W . Then f ∈ π−1(W ), which is open
in X. Hence, there exists an r > 0 such that BX

r (f) ⊆ π−1(W ). By part (b) we therefore
have

BX/M
r (f +M) = π

(
BX
r (f)

)
⊆ π

(
π−1(W )

)
= W.

Therefore W is open.

(d) Suppose that U is an open subset of X. Then by Exercise 2.2(c), we have

π−1
(
π(U)

)
= U +M = {u+m : u ∈ U,m ∈M} =

⋃
m∈M

(U +m).

But each set U +m, being the translate of the open set U , is itself open. Hence π−1
(
π(U)

)
is open, since it is a union of open sets. Part (c) therefore implies that π(U) is open in
X/M . �
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Exercise 2.7. Let M be a closed subspace of a normed space X, and let π be the canonical
projection π of X onto X/M . Prove that ‖π‖ = 1.

Hint: F. Riesz’s Lemma.

Lemma 2.8 (F. Riesz’s Lemma). Let M be a proper, closed subspace of a normed space X.
Then for each ε > 0, there exists g ∈ X with ‖g‖ = 1 such that

dist(g,M) = inf
f∈M
‖g − f‖ > 1− ε.

Proof. Choose any u ∈ X \M . Since M is closed, we have

a = dist(u,M) = inf
f∈M
‖u− f‖ > 0.

Fix δ > 0 small enough that a
a+δ

> 1− ε. By definition of infimum, there exists v ∈M such
that a ≤ ‖u− v‖ < a+ δ. Set

g =
u− v
‖u− v‖

,

and note that ‖g‖ = 1. Given f ∈M we have h = v + ‖u− v‖ f ∈M , so

‖g − f‖ =

∥∥∥∥u− v − ‖u− v‖ f‖u− v‖

∥∥∥∥ =
‖u− h‖
‖u− v‖

>
a

a+ δ
> 1− ε. �

Exercise 2.9. Let X be a normed linear space. Let B = {x ∈ X : ‖x‖ ≤ 1} be the closed
unit ball in X. Prove that if B is compact, then X is finite-dimensional.

Hints: Suppose that X is infinite-dimensional. Given any nonzero e1 with ‖e1‖ ≤ 1, by
Lemma 2.8 there exists e2 ∈ X \span{e1} with ‖e2‖ ≤ 1 such that ‖e2−e1‖ > 1

2
. Continue in

this way to construct vectors ek such that {e1, . . . , en} are independent for any n. Conclude
that X is infinite-dimensional.

3. The Banach Space X/M

Now we can prove that if X is a Banach space, then X/M inherits a Banach space structure
from X.

Theorem 3.1. If M is a closed subspace of a Banach space X, then X/M is a Banach space.

Proof. We have already shown that X/M is a normed space, so we must show that it is
complete in that norm.

Suppose that {fn + M}n∈N is a Cauchy sequence in X/M . It would be convenient if this
implies that {fn}n∈N is a Cauchy sequence in X, but this need not be the case. For, the
vectors fn are not unique in general: if we replace fn by any vector fn + m with m ∈ M ,
then we obtain the same coset. We will show that by choosing an appropriate subsequence
{fnk
}k∈N and replacing the fnk

by appropriate vectors that determine the same cosets fnk
+M ,

we can create a sequence in X that is Cauchy and hence converges, and then use this to
show that the original sequence of cosets {fn +M}n∈N converges in X/M .
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We begin by applying an earlier exercise about Cauchy sequences: there exists a subse-
quence {fnk

+M}k∈N such that

∀ k ∈ N, ‖(fnk+1
− fnk

) +M‖ = ‖(fnk+1
+M)− (fnk

+M)‖ < 2−k.

Now we seek to create vectors gk ∈M so that {fnk
−gk}k∈N will converge in X. Note that

the cosets determined by fnk
and by fnk

− gk are identical.
Set g1 = 0. Then

inf
g∈M
‖(fn1 − g1)− (fn2 − g)‖ = inf

g∈M
‖(fn1 − fn2) + g‖ = ‖(fn1 − fn2) +M‖ <

1

2
.

Therefore, there exists a g2 ∈M such that

‖(fn1 − g1)− (fn2 − g2)‖ <
1

2
.

Then, since g2 ∈M ,

inf
g∈M
‖(fn2 − g2)− (fn3 − g)‖ = inf

g∈M
‖(fn2 − fn3) + g‖ = ‖(fn2 − fn3) +M‖ <

1

22
.

Therefore, there exists a g3 ∈M such that

‖(fn2 − g2)− (fn3 − g3)‖ <
1

22
.

Continuing in this way, by induction we construct hk = fnk
− gk such that

‖hk − hk+1‖ <
1

2k
.

An earlier exercise therefore implies that {hk}k∈N is a Cauchy sequence in X. Since X is
complete, this sequence converges, say hk → h.

Since

‖(fnk
+M)− (h+M)‖ = ‖fnk

− gk − h+M‖ (since gk ∈M)

= ‖hk − h+M‖

≤ ‖hk − h‖ → 0,

we see that {fnk
+M}k∈N is a convergent subsequence of {fn+M}n∈N. Thus {fn+M}n∈N is a

Cauchy sequence that has a convergent subsequence, and hence it must converge. Therefore
X/M is complete. �

The following exercise shows that the converse of the preceding theorem is true as well.

Exercise 3.2. Let M be a closed subspace of a normed space X. Prove that if M and X/M
are both complete, then X must be complete.

Note: Since X is not assumed to be a Banach space, the fact that M is closed does not
imply that M is complete. We need that as a separate assumption.

Hints: Suppose that {fn}n∈N is a Cauchy sequence in X. Show that {fn + M}n∈N is a
Cauchy sequence in X/M , hence converges to some coset f +M . Thus ‖f − fn +M‖ → 0.
Does this imply that there exists a g ∈M such that ‖f − fn + g‖ → 0? Or perhaps vectors
gn ∈M such that ‖f − fn + gn‖ → 0?
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The quotient space and canonical map will be useful tools for proving many later results.
The following proof illustrates their utility.

Proposition 3.3. Let X be a normed linear space. If M is a closed subspace of X and N
is finite-dimensional, then M +N is a closed subspace of X.

Proof. Let π be the canonical projection of X onto X/M . Since N is finite-dimensional, it
has a finite basis, say {e1, . . . , en}. Then since π is linear,

π(N) = π
(
span{e1, . . . , en}

)
= span{π(e1), . . . , π(en)} = span{e1 +M, . . . , en +M}.

Thus π(N) is a finite-dimensional subspace of X/M , and therefore is closed. Since π is
continuous, it follows that π−1(π(N)) is closed in X. However, by Exercise 2.2(c), we have
π−1(π(N)) = M +N . �

4. Additional Exercises on Quotient Spaces

Exercise 4.1. Let M be a closed subspace of a normed linear space X.

(a) Prove that if X is separable, then X/M is separable.

(b) Prove that if X/M and M are both separable, then X is separable.
Hint: Let {fn +M}n∈N be a countable dense subset of X/M , and let {gn}n∈N be a

countable dense subset of M . Then S = {fm + gn}m,n∈N is a countable subset of X.
Show that it is dense in X.

(c) Give an example of X, M such that X/M is separable, but X is not separable.

Exercise 4.2. Fix 1 ≤ p ≤ ∞.

(a) Show that
M =

{
x = (xk)k∈N ∈ `p : x1 = 0

}
is a closed subspace of `p. Further, codim(M) = 1 and `p ∼= M .

(b) Show that
M =

{
x = (xk)k∈N ∈ `p : x2k = 0 ∀ k ∈ N

}
is a closed subspace of `p. Further, codim(M) =∞, `p ∼= M , and `p/M ∼= `p.

Exercise 4.3. Define

c0 =
{
x = (xk)k∈N : lim

k→∞
xk = 0

}
,

c =
{
x = (xk)k∈N : lim

k→∞
xk exists

}
.

(a) Show that c and c0 are closed subspaces of `∞.

(b) Show that dim(c/c0) = 1.

(c) Show directly that c0
∗ ∼= `1 and c∗ ∼= `1.

(d) Is c0 ∼= c?
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Exercise 4.4. Recall that c0 is a closed subspace of the Banach space `∞.

(a) Prove that `∞ is not separable.
Hint: Consider

S = {(x1, x2, . . . ) : xk = 0 or 1 for every k}.
What is the distance between two distinct elements of S?

(b) Let x, y be vectors in S. Prove that if xk 6= yk for at most finitely many k, then
x+ c0 = y + c0. Prove that if xk 6= yk for infinitely many k, then ‖x− y + c0‖ = 1.

(c) Use part (b) to prove directly that `∞/c0 is not separable.

(e) Prove that the standard basis {en}n∈N is a Schauder basis for c0 (with respect to the
`∞-norm).

(f) Use part (e) to show that c0 is separable.

(g) Use part (f) and Exercise 4.1 to show that `∞/c0 is not separable.


