FUNCTIONAL ANALYSIS LECTURE NOTES:

ADJOINTS IN HILBERT SPACES

CHRISTOPHER HEIL

1. Adjoints in Hilbert Spaces

Recall that the dot product on \mathbb{R}^n is given by $x \cdot y = x^{\mathbb{T}}y$, while the dot product on \mathbb{C}^n is $x \cdot y = x^{\mathbb{T}}\bar{y}$.

Example 1.1. Let A be an $m \times n$ real matrix. Then $x \mapsto Ax$ defines a linear map of \mathbb{R}^n into \mathbb{R}^m , and its transpose $A^{\mathbb{T}}$ satisfies

$$\forall x \in \mathbb{R}^n, \quad \forall y \in \mathbb{R}^m, \quad Ax \cdot y = (Ax)^{\mathbb{T}} y = x^{\mathbb{T}} A^{\mathbb{T}} y = x \cdot (A^{\mathbb{T}} y).$$

Similarly, if A is an $m \times n$ complex matrix, then its Hermitian or adjoint matrix $A^{H} = \overline{A^{T}}$ satisfies

$$\forall x \in \mathbb{C}^n, \quad \forall y \in \mathbb{C}^m, \quad Ax \cdot y = (Ax)^{\mathbb{T}} \bar{y} = x^{\mathbb{T}} A^{\mathbb{T}} \bar{y} = x \cdot (A^{\mathbb{H}} y).$$

Theorem 1.2 (Adjoint). Let H and K be Hilbert spaces, and let $A: H \to K$ be a bounded, linear map. Then there exists a unique bounded linear map $A^*: K \to H$ such that

$$\forall \, x \in H, \quad \forall \, y \in K, \quad \langle Ax, y \rangle \; = \; \langle x, A^*y \rangle.$$

Proof. Fix $y \in K$. Then $Lx = \langle Ax, y \rangle$ is a bounded linear functional on H. By the Riesz Representation Theorem, there exists a unique vector $h \in H$ such that

$$\langle Ax, y \rangle = Lx = \langle x, h \rangle.$$

Define $A^*y = h$. Verify that this map A^* is linear (exercise). To see that it is bounded, observe that

$$\begin{split} \|A^*y\| \; &= \; \|h\| \; = \; \sup_{\|x\|=1} |\langle x,h \rangle| \\ &= \; \sup_{\|x\|=1} |\langle Ax,y \rangle| \\ &\leq \; \sup_{\|x\|=1} \|Ax\| \, \|y\| \\ &\leq \; \sup_{\|x\|=1} \|A\| \, \|x\| \, \|y\| \; = \; \|A\| \, \|y\|. \end{split}$$

These notes closely follow and expand on the text by John B. Conway, "A Course in Functional Analysis," Second Edition, Springer, 1990.

^{© 2007} by Christopher Heil.

We conclude that A^* is bounded, and that $||A^*|| \leq ||A||$.

Finally, we must show that A^* is unique. Suppose that $B \in \mathcal{B}(K, H)$ also satisfied $\langle Ax, y \rangle = \langle x, By \rangle$ for all $x \in H$ and $y \in K$. Then for each fixed y we would have that $\langle x, By - A^*y \rangle = 0$ for every x, which implies $By - A^*y = 0$. Hence $B = A^*$.

Exercise 1.3 (Properties of the adjoint).

- (a) If $A \in \mathcal{B}(H, K)$ then $(A^*)^* = A$.
- (b) If $A, B \in \mathcal{B}(H, K)$ and $\alpha, \beta \in \mathbb{F}$, then $(\alpha A + \beta B)^* = \bar{\alpha}A^* + \bar{\beta}B^*$.
- (c) If $A \in \mathcal{B}(H_1, H_2)$ and $B \in \mathcal{B}(H_2, H_3)$, then $(BA)^* = A^*B^*$.
- (d) If $A \in \mathcal{B}(H)$ is invertible in $\mathcal{B}(H)$ (meaning that there exists $A^{-1} \in \mathcal{B}(H)$ such that $AA^{-1} = A^{-1}A = I$), then A^* is invertible in $\mathcal{B}(H)$ and $(A^{-1})^* = (A^*)^{-1}$.

Note: By the Inverse Mapping Theorem, A is invertible in $\mathcal{B}(H)$ if and only if A is a bounded linear bijection.

Proposition 1.4. If $A \in \mathcal{B}(H, K)$, then $||A|| = ||A^*|| = ||A^*A||^{1/2} = ||AA^*||^{1/2}$.

Proof. In the course of proving Theorem 1.2, we already showed that $||A^*|| \le ||A||$. If $f \in H$, then

$$||Af||^2 = \langle Af, Af \rangle = \langle A^*Af, f \rangle \le ||A^*Af|| ||f|| \le ||A^*|| ||Af|| ||f||. \tag{1.1}$$

Hence $||Af|| \le ||A^*|| ||f||$ (even if ||Af|| = 0, this is still true). Since this is true for all f we conclude that $||A|| \le ||A^*||$. Therefore $||A|| = ||A^*||$.

Next, we have $||A^*A|| \le ||A|| ||A^*|| = ||A||^2$. But also, from the calculation in (1.1), we have $||Af||^2 \le ||A^*Af|| ||f||$. Taking the supremum over all unit vectors, we obtain

$$||A||^2 = \sup_{\|f\|=1} ||Af||^2 \le \sup_{\|f\|=1} ||A^*Af|| \, ||f|| = ||A^*A||.$$

Consequently $||A||^2 = ||A^*A||$. The final equality follows by interchanging the roles of A and A^* .

Exercise 1.5. Prove that if $U \in \mathcal{B}(H,K)$, then U is an isomorphism if and only if U is invertible and $U^{-1} = U^*$.

Exercise 1.6. Let $\{e_n\}_{n\in\mathbb{N}}$ be an orthonormal basis for a separable Hilbert space H. Then we know that every $f\in H$ can be written

$$f = \sum_{n=1}^{\infty} \langle f, e_n \rangle e_n.$$

If $\lambda = (\lambda_n)_{n \in \mathbb{N}} \in \ell^{\infty}(\mathbb{N})$ is given, then

$$Lf = \sum_{n=1}^{\infty} \lambda_n \langle f, e_n \rangle e_n$$
 (1.2)

is a bounded linear map of L into itself. Find L^* .

Exercise 1.7. Let (X, Ω, μ) be a measure space, and let $\phi \in L^{\infty}(X)$ be a fixed measurable function. Then $M_{\phi} \colon L^{2}(X) \to L^{2}(X)$ given by

$$M_{\phi}f = f\phi, \qquad f \in L^2(X)$$

is a bounded linear operator. Prove that the adjoint of M_{ϕ} is the multiplication operator $M_{\bar{\phi}}$.

Exercise 1.8. Let L and R be the left- and right-shift operators on $\ell^2(\mathbb{N})$, i.e.,

$$L(x_1, x_2, \dots) = (x_2, x_3, \dots)$$
 and $R(x_1, x_2, \dots) = (0, x_1, x_2, \dots)$.

Prove that $L = R^*$.

Example 1.9. Let (X, Ω, μ) be a σ -finite measure space. An *integral operator* is an operator of the form

$$Lf(x) = \int_X k(x,y) f(y) d\mu(y).$$
 (1.3)

Assume that k is chosen so that $L: L^2(X) \to L^2(X)$ is bounded. The adjoint is the unique operator $L^*: L^2(X) \to L^2(X)$ which satisfies

$$\langle Lf, g \rangle = \langle f, L^*g \rangle, \qquad f, g \in L^2(X).$$

To find L^* , let $A: L^2(X) \to L^2(X)$ be the integral operator with kernel $\overline{k(y,x)}$, i.e.,

$$Af(x) \ = \ \int_X \overline{k(y,x)} \, f(y) \, d\mu(y).$$

Then, given any f and $g \in L^2(X)$, we have

$$\begin{split} \langle f, L^*g \rangle \; &= \; \langle Lf, g \rangle \; = \; \int_X Lf(x) \, \overline{g(x)} \, d\mu(x) \\ &= \; \int_X \int_X k(x,y) \, f(y) \, d\mu(y) \, \overline{g(x)} \, d\mu(x) \\ &= \; \int_X f(y) \, \int_X k(x,y) \, \overline{g(x)} \, d\mu(x) \, d\mu(y) \\ &= \; \int_X f(y) \, \overline{\int_X \overline{k(x,y)} \, g(x) \, d\mu(x)} \, d\mu(y) \\ &= \; \int_X f(y) \, \overline{Ag(y)} \, d\mu(y) \\ &= \; \langle f, Ag \rangle. \end{split}$$

By uniqueness of the adjoint, we must have $L^* = A$.

Exercise: Justify the interchange in the order of integration in the above calculation, i.e., provide hypotheses under which the calculations above are justified.

Exercise 1.10. Let $\{e_n\}_{n\in\mathbb{N}}$ be an orthonormal basis for a separable Hilbert space H. Define $T: H \to \ell^2(\mathbb{N})$ by $T(f) = \{\langle f, e_n \rangle\}_{n \in \mathbb{N}}$. Find a formula for $T^*: \ell^2(\mathbb{N}) \to H$.

Definition 1.11. Let $A \in \mathcal{B}(H)$.

- (a) We say that A is self-adjoint or Hermitian if $A = A^*$.
- (b) We say that A is normal if $AA^* = A^*A$.

Example 1.12. A real $n \times n$ matrix A is self-adjoint if and only if it is symmetric, i.e., if $A = A^{\mathbb{T}}$. A complex $n \times n$ matrix A is self-adjoint if and only if it is Hermitian, i.e., if $A = A^{\mathbb{H}}$.

Exercise 1.13. Show that every self-adjoint operator is normal. Show that every unitary operator is normal, but that a unitary operator need not be self-adjoint. For $H = \mathbb{C}^n$, find examples of matrices that are not normal. Are the left- and right-shift operators on $\ell^2(\mathbb{N})$ normal?

Exercise 1.14. (a) Show that if $A, B \in \mathcal{B}(H)$ are self-adjoint, then AB is self-adjoint if and only if AB = BA.

- (b) Give an example of self-adjoint operators A, B such that AB is not self-adjoint.
- (c) Show that if $A, B \in \mathcal{B}(H)$ are self-adjoint then $A + A^*$, AA^* , A^*A , A + B, ABA, and BAB are all self-adjoint. What about $A A^*$ or A B? Show that $AA^* A^*A$ is self-adjoint.

Exercise 1.15. (a) Let $\lambda = (\lambda_n)_{n \in \mathbb{N}} \in \ell^{\infty}(\mathbb{N})$ be given and let L be defined as in equation 1.2. Show that L is normal, find a formula for L^* , and prove that L is self-adjoint if and only if each λ_n is real.

- (b) Determine a necessary and sufficient condition on ϕ so that the multiplication operator M_{ϕ} defined in Exercise 1.7 is self-adjoint.
- (c) Determine a necessary and sufficient condition on the kernel k so that the integral operator L defined in equation (1.3) is self-adjoint.

The following result gives a useful condition for telling when an operator on a *complex* Hilbert space is self-adjoint.

Proposition 1.16. Let H be a complex Hilbert space (i.e., $\mathbb{F} = \mathbb{C}$), and let $A \in \mathcal{B}(H)$ be given. Then:

A is self-adjoint
$$\iff$$
 $\langle Af, f \rangle \in \mathbb{R} \ \forall f \in H.$

Proof. \Rightarrow . Assume $A = A^*$. Then for any $f \in H$ we have

$$\overline{\langle Af, f \rangle} = \langle f, Af \rangle = \langle A^*f, f \rangle = \langle Af, f \rangle.$$

Therefore $\langle Af, f \rangle$ is real.

 \Leftarrow . Assume that $\langle Af, f \rangle$ is real for all f. Choose any $f, g \in H$. Then

$$\langle A(f+g), f+g \rangle \; = \; \langle Af, f \rangle + \langle Af, g \rangle + \langle Ag, f \rangle + \langle Ag, g \rangle.$$

Since $\langle A(f+g), f+g \rangle$, $\langle Af, f \rangle$, and $\langle Ag, g \rangle$ are all real, we conclude that $\langle Af, g \rangle + \langle Ag, f \rangle$ is real. Hence it equals its own complex conjugate, i.e.,

$$\langle Af, g \rangle + \langle Ag, f \rangle = \overline{\langle Af, g \rangle + \langle Ag, f \rangle} = \langle g, Af \rangle + \langle f, Ag \rangle.$$
 (1.4)

Similarly, since

$$\langle A(f+ig), f+ig \rangle = \langle Af, f \rangle - i \langle Af, g \rangle + i \langle Ag, f \rangle + \langle Ag, g \rangle$$

we see that

$$-i\langle Af,g\rangle + i\langle Ag,f\rangle = \overline{-i\langle Af,g\rangle + i\langle Ag,f\rangle} = i\langle g,Af\rangle - i\langle f,Ag\rangle.$$

Multiplying through by i yields

$$\langle Af, g \rangle - \langle Ag, f \rangle = -\langle g, Af \rangle + \langle f, Ag \rangle. \tag{1.5}$$

Adding (1.4) and (1.5) together, we obtain

$$2\langle Af, g \rangle = 2\langle f, Ag \rangle = 2\langle A^*f, g \rangle.$$

Since this is true for every f and g, we conclude that $A = A^*$.

Example 1.17. The preceding result is false for real Hilbert spaces. After all, if $\mathbb{F} = \mathbb{R}$ then $\langle Af, f \rangle$ is real for every f no matter what A is. Therefore, any non-self-adjoint operator provides a counterexample. For example, if $H = \mathbb{R}^n$ then any non-symmetric matrix A is a counterexample.

The next result provides a useful way of calculating the operator norm of a self-adjoint operator.

Proposition 1.18. If $A \in \mathcal{B}(H)$ is self-adjoint, then

$$||A|| = \sup_{||f||=1} |\langle Af, f \rangle|.$$

Proof. Set $M = \sup_{\|f\|=1} |\langle Af, f \rangle|$.

By Cauchy–Schwarz and the definition of operator norm, we have

$$M \ = \ \sup_{\|f\|=1} |\langle Af, f \rangle| \ \leq \ \sup_{\|f\|=1} \|Af\| \, \|f\| \ \leq \ \sup_{\|f\|=1} \|A\| \, \|f\| \, \|f\| \ = \ \|A\|.$$

To get the opposite inequality, note that if f is any nonzero vector in H then $f/\|f\|$ is a unit vector, so $\langle A_{\|f\|}^f$, $\frac{f}{\|f\|} \rangle \leq M$. Rearranging, we see that

$$\forall f \in H, \quad \langle Af, f \rangle \le M \|f\|^2. \tag{1.6}$$

Now choose any $f, g \in H$ with ||f|| = ||g|| = 1. Then, by expanding the inner products, canceling terms, and using the fact that $A = A^*$, we see that

$$\langle A(f+g), f+g \rangle - \langle A(f-g), f-g \rangle = 2 \langle Af, g \rangle + 2 \langle Ag, f \rangle$$

= $2 \langle Af, g \rangle + 2 \langle g, Af \rangle$
= $4 \operatorname{Re} \langle Af, g \rangle$.

Therefore, applying (1.6) and the Parallelogram Law, we have

$$4\operatorname{Re}\langle Af, g \rangle \leq |\langle A(f+g), f+g \rangle| + |\langle A(f-g), f-g \rangle|$$

$$\leq M \|f+g\|^2 + M \|f-g\|^2$$

$$= 2M (\|f\|^2 + \|g\|^2) = 4M.$$

That is, Re $\langle Af, g \rangle \leq M$ for every choice of unit vectors f and g. Write $\langle Af, g \rangle = |\langle Af, g \rangle| e^{i\theta}$. Then $e^{i\theta}g$ is another unit vector, so

$$M \ge \operatorname{Re} \langle Af, e^{-i\theta}g \rangle = \operatorname{Re} e^{i\theta} \langle Af, g \rangle = |\langle Af, g \rangle|.$$

Hence

$$||Af|| = \sup_{\|g\|=1} |\langle Af, g \rangle| \le M.$$

Since this is true for every unit vector f, we conclude that $||A|| \leq M$.

The following corollary is a very useful consequence.

Corollary 1.19. Assume that $A \in \mathcal{B}(H)$.

- (a) If $\mathbb{F} = \mathbb{R}$, $A = A^*$, and $\langle Af, f \rangle = 0$ for every f, then A = 0.
- (b) If $\mathbb{F} = \mathbb{C}$ and $\langle Af, f \rangle = 0$ for every f, then A = 0.

Proof. Assume the hypotheses of either statement (a) or statement (b). In the case of statement (a), we have by hypothesis that A is self-adjoint. In the case of statement (b), we can conclude that A is self-adjoint because $\langle Af, f \rangle = 0$ is real for every f. Hence in either case we can apply Proposition 1.18 to conclude that

$$||A|| = \sup_{\|f\|=1} |\langle Af, f \rangle| = 0.$$

Lemma 1.20. If $A \in \mathcal{B}(H)$, then the following statements are equivalent.

- (a) A is normal, i.e., $AA^* = A^*A$.
- (b) $||Af|| = ||A^*f||$ for every $f \in H$.

Proof. (b) \Rightarrow (a). Assume that (b) holds. Then for every f we have

$$\langle (A^*A - AA^*)f, f \rangle = \langle A^*Af, f \rangle - \langle AA^*f, f \rangle$$
$$= \langle Af, Af \rangle - \langle A^*f, A^*f \rangle$$
$$= ||Af||^2 - ||A^*f||^2 = 0.$$

Since $A^*A - AA^*$ is self-adjoint, it follows from Corollary 1.19 that $A^*A - AA^* = 0$.

$$(a) \Rightarrow (b)$$
. Exercise.

Corollary 1.21. If $A \in \mathcal{B}(H)$ is normal, then $\ker(A) = \ker(A^*)$.

Exercise 1.22. Suppose that $A \in \mathcal{B}(H)$ is normal. Prove that A is injective if and only if range(A) is dense in H.

Exercise 1.23. If $A \in \mathcal{B}(H)$, then the following statements are equivalent.

- (a) A is an isometry, i.e., ||Af|| = ||f|| for every $f \in H$.
- (b) $A^*A = I$.
- (c) $\langle Af, Aq \rangle = \langle f, q \rangle$ for every $f, q \in H$.

Exercise 1.24. If $H = \mathbb{C}^n$ and A, B are $n \times n$ matrices, then AB = I implies BA = I. Give a counterexample to this for an infinite-dimensional Hilbert space. Consequently, the hypothesis $A^*A = I$ in the preceding result does not imply that $AA^* = I$.

Exercise 1.25. If $A \in \mathcal{B}(H)$, then the following statements are equivalent.

- (a) $A^*A = AA^* = I$.
- (b) A is unitary, i.e., it is a surjective isometry.
- (c) A is a normal isometry.

The following result provides a very useful relationship between the range of A^* and the kernel of A.

Theorem 1.26. Let $A \in \mathcal{B}(H, K)$.

- (a) $\ker(A) = \operatorname{range}(A^*)^{\perp}$.
- (b) $\ker(A)^{\perp} = \overline{\operatorname{range}(A^*)}$.
- (c) A is injective if and only if range(A^*) is dense in H.

Proof. (a) Assume that $f \in \ker(A)$ and let $h \in \operatorname{range}(A^*)$, i.e., $h = A^*g$ for some $g \in K$. Then since Af = 0, we have $\langle f, h \rangle = \langle f, A^*g \rangle = \langle Af, g \rangle = 0$. Thus $f \in \operatorname{range}(A^*)^{\perp}$, so $\ker(A) \subseteq \operatorname{range}(A^*)^{\perp}$.

Now assume that $f \in \text{range}(A^*)^{\perp}$. Then for any $h \in H$ we have $\langle Af, h \rangle = \langle f, A^*h \rangle = 0$. But this implies Af = 0, so $f \in \text{ker}(A)$. Thus $\text{range}(A^*)^{\perp} \subseteq \text{ker}(A)$.

(b), (c) Exercises. \Box