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Functional Analysis and Operator Theory

C.1 Linear Operators on Normed Spaces

In this section we will review the basic properties of linear operators on normed
spaces.

Definition C.1 (Notation for Operators). Let X, Y be vector spaces, and
let T : X → Y be a function mapping X into Y. We write either T (f) or Tf
to denote the image under T of an element f ∈ X.

(a) T is linear if T (αf+βg) = αT (f)+βT (g) for every f, g ∈ X and α, β ∈ C.

(b) T is antilinear if T (αf +βg) = ᾱT (f)+ β̄T (g) for f, g ∈ X and α, β ∈ C.

(c) T is injective if T (f) = T (g) implies f = g.

(d) The kernel or nullspace of T is ker(T ) = {f ∈ X : T (f) = 0}.

(e) The range of T is range(T ) = {T (f) : f ∈ X}.

(f) The rank of T is the vector space dimension of its range, i.e., rank(T ) =
dim(range(T )). In particular, T is finite-rank if range(T ) is finite-dimen-
sional.

(g) T is surjective if range(T ) = Y.

(h) T is a bijection if it is both injective and surjective.

We use either the symbol I or IX to denote the identity map of a space
X onto itself.

A mapping between vector spaces is often referred to as an operator or a
transformation, especially if it is linear. We introduce the following terminol-
ogy for operators on normed spaces.

Definition C.2 (Operators on Normed Spaces). Let X, Y be normed
linear spaces, and let L : X → Y be a linear operator.



300 C Functional Analysis and Operator Theory

(a) L is bounded if there exists a finite K ≥ 0 such that

∀ f ∈ X, ‖Lf‖ ≤ K ‖f‖.

By context, ‖Lf‖ denotes the norm of Lf in Y, while ‖f‖ denotes the
norm of f in X.

(b) The operator norm of L is

‖L‖ = sup
‖f‖=1

‖Lf‖. (C.1)

On those occasions where we need to specify the spaces in question, we
will write ‖L‖X→Y for the operator norm of L : X → Y.

(c) We set

B(X, Y ) =
{
L : X → Y : L is bounded and linear

}
.

If X = Y then we write B(X) = B(X, X).

(f) If Y = C then we say that L is a functional. The set of all bounded linear
functionals on X is the dual space of X, and is denoted

X∗ = B(X, C) =
{
L : X → C : L is bounded and linear

}
.

Another common notation for the dual space is X ′.

Notation C.3 (Terminology for Unbounded Operators). Unbounded
operators are often not defined on the entire space X but only on some dense
subspace. For example, the differentiation operator Df = f ′ is not defined
on all of Lp(R), but it is common to refer to the “differentiation operator D
on Lp(R)”, with the understanding that D is only defined on some associated
dense subspace such as Lp(R)∩C1(R) or S(R). Another common terminology
is to write that “D : Lp(R) → Lp(R) is densely defined,” again meaning that
the domain of D is a dense subspace of Lp(R) and D maps this domain into
Lp(R).

Exercise C.4. Let X, Y be normed linear spaces. Let L : X → Y be a linear
operator.

(a) L is injective if and only if kerL = {0}.

(b) If L is a bijection then the inverse map L−1 : Y → X is also a linear
bijection.

(c) L is bounded if and only if ‖L‖ < ∞.

(d) If L is bounded then ‖Lf‖ ≤ ‖L‖ ‖f‖ for every f ∈ X, and ‖L‖ is the
smallest K such that ‖Lf‖ ≤ K‖f‖ for all f ∈ X.

(e) ‖L‖ = sup
‖f‖≤1

‖Lf‖ = sup
f 6=0

‖Lf‖

‖f‖
.
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Example C.5. Consider a linear operator on a finite-dimensional space, say
L : Cn → Cm. For simplicity, impose the Euclidean norm on both Cn and
C

m. If we let C = {x ∈ C
n : ‖x‖ = 1} be the unit sphere in C

n, then
L(C) = {Lx : ‖x‖ = 1} is a (possibly degenerate) ellipsoid in Rm. The
supremum in the definition of the operator norm of L is achieved in this case,
and is the length of a semimajor axis of the ellipsoid L(C). Thus, ‖L‖ is the
“maximum distortion” of the unit sphere under L, illustrated for the case
m = n = 2 (with real scalars) in Figure C.1.
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Fig. C.1. Image of the unit circle under a particular linear operator L : R
2 → R

2
.

The operator norm ‖L‖ of L is the length of a semimajor axis of the ellipse.

C.1.1 Equivalence of Boundedness and Continuity

Our first main result of this section shows that continuity is equivalent
to boundedness for linear operators on normed spaces. Recall that, by
Lemma A.53, if X and Y are normed spaces, then L : X → Y is continu-
ous at a point f ∈ X if fn → f in X implies Lfn → Lf in Y, and L is
continuous if it is continuous at every point.

Theorem C.6 (Equivalence of Bounded and Continuous Linear Op-
erators). If X, Y are normed spaces and L : X → Y is linear, then the
following statements are equivalent.

(a) L is continuous at some f ∈ X.
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(b) L is continuous at f = 0.

(c) L is continuous.

(d) L is bounded.

Proof. (c) ⇒ (d). Suppose that L is continuous but unbounded. Then we have
‖L‖ = ∞, so there must exist fn ∈ X with ‖fn‖ = 1 such that ‖Lfn‖ ≥ n.
Set gn = fn/n. Then ‖gn − 0‖ = ‖gn‖ = ‖fn‖/n → 0, so gn → 0. Since L is
continuous and linear, this implies Lgn → L0 = 0. By the continuity of the
norm, we therefore have ‖Lgn‖ → ‖0‖ = 0. However,

‖Lgn‖ =
1

n
‖Lfn‖ ≥

1

n
· n = 1

for all n, which is a contradiction. Hence L must be bounded. ⊓⊔

Thus, if X, Y are normed and L : X → Y is linear, the terms “continuous”
and “bounded” are interchangeable.

C.1.2 Isomorphisms

The notion of a topological isomorphism (or homeomorphism) between arbi-
trary topological spaces was introduced in Definition A.50. We repeat it here
for the case of normed spaces, along with additional terminology for operators
that preserve norms.

Definition C.7 (Isometries and Isomorphisms). Let X, Y be normed
spaces, and let L : X → Y be linear.

(a) If L : X → Y is a linear bijection such that both L and L−1 are continuous,
then L is called a topological isomorphism, or is said to be continuously
invertible.

(b) If there exists a topological isomorphism L : X → Y, then we say that X
and Y are topologically isomorphic.

(c) If ‖Lf‖ = ‖f‖ for all f ∈ X then L is called an isometry or is said to be
norm-preserving.

(d) An isometry L : X → Y that is a bijection is an isometric isomorphism.

(e) If there exists an isometry L : X → Y then we say that X and Y are
isometrically isomorphic, and we write X ∼= Y in this case.

On occasion, we will deal with antilinear isometric isomorphisms, which
are entirely analogous except that the mapping L is antilinear instead of linear.

Remark C.8. The Inverse Mapping Theorem, which will be discussed in Sec-
tion C.13, states that if X and Y are Banach spaces and L : X → Y is a
bounded linear bijection, then L−1 is automatically bounded and hence L is
a topological isomorphism. Thus, when X and Y are Banach spaces, every
continuous linear bijection is actually a topological isomorphism.
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We have the following special terminology for isometric isomorphisms on
Hilbert spaces.

Definition C.9 (Unitary Operator). If H, K are Hilbert spaces and
L : H → K is an isometric isomorphism, then L is called a unitary opera-
tor, and in this case we say that H and K are unitarily isomorphic.

An isometry on an inner product space must preserve the inner product
as well as the norm.

Exercise C.10. Let H, K be inner product spaces, and let L : H → K be a
linear mapping. Prove that L is an isometry if and only if 〈Lf, Lg〉 = 〈f, g〉
for all f, g ∈ H.

C.1.3 Eigenvalues and Eigenvectors

We recall the definition of the eigenvalues and eigenvectors of an operator
that maps a space into itself.

Definition C.11 (Eigenvalues and Eigenvectors). Let X be a normed
space and L : X → X a linear operator.

(a) A scalar λ is an eigenvalue of L if there exists a nonzero vector f ∈ X
such that Lf = λf.

(b) A nonzero vector f ∈ X is an eigenvector of L if there exists a scalar λ
such that Lf = λf.

If x is an eigenvector of L corresponding to the eigenvalue λ, then we often
say that x is a λ-eigenvector.

If λ is an eigenvalue of L, then ker(L − λI) is called the eigenspace corre-
sponding to λ, or the λ-eigenspace for short.

Additional Problems

C.1. Show that if X is any finite-dimensional vector space (under any norm)
and Y is any normed linear space, then every linear function L : X → Y is
bounded.

C.2. (a) Define L : ℓ2(N) → ℓ2(N) by L(x) = (x2, x3, . . . ). Prove that this
left-shift operator is bounded, linear, surjective, not injective, and is not an
isometry. Find ‖L‖ and all eigenvalues and eigenvectors of L.

(b) Define R : ℓ2(N) → ℓ2(N) by R(x) = (0, x1, x2, x3, . . . ). Prove that
this right-shift operator is bounded, linear, injective, not surjective, and is an
isometry. Find ‖R‖ and all eigenvalues and eigenvectors of R.

(c) Compute LR and RL and show that LR 6= RL. Contrast this compu-
tation with the fact that in finite dimensions, if A, B : Cn → Cn are linear
maps (hence correspond to multiplication by n×n matrices), then AB = I if
and only if BA = I.
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C.3. If X, Y are normed spaces and L : X → Y is continuous, show that
ker(L) is a closed subspace of X.

C.4. Let X be a Banach space and Y a normed linear space. Suppose that
L : X → Y is bounded and linear. Prove that if there exists c > 0 such that
‖Lf‖ ≥ c‖f‖ for all f ∈ X, then L is injective and range(L) is closed.

C.5. Show that if L : X → Y is a topological isomorphism, then we have
‖L−1‖−1 ‖f‖ ≤ ‖Lf‖ ≤ ‖L‖ ‖f‖ for all f ∈ X.

C.6. Show that if H, K are separable Hilbert spaces, then H and K are
unitarily isomorphic.

C.7. Let A be an m× n complex matrix, which we view as a linear transfor-
mation A : Cn → Cm. The operator norm of A depends on the choice of norm
for C

n and C
m. Compute an explicit formula for ‖A‖, in terms of the entries

of A, when the norm on Cn and Cm is taken to be the ℓ1 norm. Then do the
same for the ℓ∞ norm. Compare your formulas to the version of Schur’s Test
given in Theorem C.20.

C.8. The Axiom of Choice implies that every vector space X has a Hamel
basis (Theorem G.3). Use this to show that if X is an infinite-dimensional
normed linear space, then there exists a linear functional µ : X → C that is
unbounded.

C.2 Some Useful Operators

In this section we describe several types of operators that appear often in the
main part of the text.

C.2.1 Orthogonal Projections

We begin with orthogonal projections in Hilbert spaces.

Definition C.12 (Orthogonal Projection). Let M be a closed subspace
of a Hilbert space H. Define P : H → H by Ph = p, where p is the orthogonal
projection of h onto M, (see Definition A.97). The operator P is the orthogonal
projection of H onto M .

Exercise C.13 (Properties of Orthogonal Projections). Let M 6= {0}
be a closed subspace of a Hilbert space H, and let P be the orthogonal pro-
jection of H onto M. Show that the following statements hold.

(a) If h ∈ H then Ph is the unique vector in M such that h − Ph ∈ M⊥.

(b) ‖h − Ph‖ = dist(h, M) for every h ∈ H.

(c) P is linear, ‖Ph‖ ≤ ‖h‖ for every h ∈ H, and ‖P‖ = 1.

(d) P is idempotent, i.e., P 2 = P.

(e) ker(P ) = M⊥ and range(P ) = M.

(f) I − P is the orthogonal projection of H onto M⊥.
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C.2.2 Multiplication Operators

Next we consider two types of “multiplication” operators. The first type mul-
tiplies each term in an orthonormal basis expansion by a fixed scalar.

Exercise C.14. Let {en}n∈N be an orthonormal basis for a separable Hilbert
space H. Then, by Exercise A.103, we know that every f ∈ H can be written
f =

∑∞
n=1

〈f, en〉 en. Fix any sequence of scalars λ = (λn)n∈N. For those
f ∈ H for which the following series converges, define

Mλf =
∞∑

n=1

λn 〈f, en〉 en. (C.2)

Prove the following facts.

(a) The series defining Mλf in (C.2) converges for every f ∈ H if and only
if λ ∈ ℓ∞. In this case Mλ is a bounded linear mapping of H into itself,
and ‖Mλ‖ = ‖λ‖∞.

(b) If λ /∈ ℓ∞, then Mλ defines an unbounded linear mapping from

domain(Mλ) =
{
f ∈ H :

∞∑

n=1

|λn 〈f, en〉|
2 < ∞

}
(C.3)

into H. Note that domain(Mλ) contains the finite span of {en}n∈N, and
hence is dense in H.

If H = ℓ2 and {en}n∈N is the standard basis for ℓ2, then the multiplication
operator Mλ defined in equation (C.2) is simply componentwise multiplica-
tion: Mλx = λx = (λ1x1, λ2x2, . . . ) for x = (x1, x2, . . . ) ∈ ℓ2. This is a discrete
version of the multiplication operator defined in the next exercise.

Exercise C.15. Let φ : R → C and 1 ≤ p ≤ ∞ be given.

(a) Show that if φ ∈ L∞(R), then Mφf = fφ is a bounded mapping of
Lp(R) into itself, and ‖Mφ‖ = ‖φ‖∞.

(b) Conversely, show that if fφ ∈ Lp(R) for every f ∈ Lp(R), then we
must have φ ∈ L∞(R).

C.2.3 Integral Operators

Now we define the important class of integral operators for the setting of the
real line.

Definition C.16 (Integral Operator). Let k be a fixed measurable func-
tion on R2. Then the integral operator Lk with kernel k is formally defined
by

Lkf(x) =

∫
k(x, y) f(y) dy, (C.4)

i.e., Lkf is defined whenever this integral makes sense.
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An integral operator is a generalization of ordinary matrix-vector multi-
plication. Let A be an m×n matrix with entries aij and let u ∈ Cn be given.
Then Au ∈ C

m, and its components are

(Au)i =

n∑

j=1

aij uj, i = 1, . . . , m.

Thus, the function values k(x, y) are analogous to the entries aij of the matrix
A, and the values Lkf(x) are analogous to the entries (Au)i.

Example C.17 (Tensor Product Kernels). The tensor product of two functions
g, h on R is the function g ⊗ h on R2 defined by

(g ⊗ h)(x, y) = g(x)h(y), x, y ∈ R.

Sometimes the complex conjugate is omitted in the definition of tensor prod-
uct, but it will be convenient for our purposes to include it.

An important special case of an integral operator is where the kernel k is
a tensor product. If we assume that g, h ∈ L2(R) and set k = g ⊗ h, then for
f ∈ L2(R),

Lkf(x) =

∫
g(x)h(y) f(y) dy = 〈f, h〉 g(x),

at least for all x for which g(x) is defined. If either g = 0 or h = 0 then Lk is
the zero operator, otherwise the range of Lk is the one-dimensional subspace
spanned by g. Thus, Lk is a very “simple” operator in this case, being a
bounded, rank one operator on L2(R).

Notation C.18. When k = g ⊗ h is a tensor product, we often identify the
operator Lk with the kernel g ⊗ h. In other words, given g and h we often let
g ⊗ h denote the operator whose rule is

(g ⊗ h)(f) = 〈f, h〉 g, f ∈ L2(R).

We can extend this notion of an operator g⊗h to arbitrary Hilbert spaces by
simply replacing L2(R) with H on the line above. That is, if g, h ∈ H then
we define g ⊗ h to be the rank one operator given by (g ⊗ h)(f) = 〈f, h〉 g
for f ∈ H. Note that if g = h and ‖g‖2 = 1, then g ⊗ g is the orthogonal
projection of H onto the line through g.

In general, it is not obvious how to tie properties of the kernel k to prop-
erties of the corresponding integral operator Lk. The next two theorems will
provide sufficient conditions that imply Lk is a bounded operator on L2(R).
First, we show that if the kernel is square-integrable, then the corresponding
integral operator is a bounded mapping of L2(R) into itself. The Hilbert–
Schmidt operators on L2(R) are precisely those operators that can be written
as integral operators with kernels k ∈ L2(R2), see Theorem C.79.



C.2 Some Useful Operators 307

Theorem C.19 (Hilbert–Schmidt Integral Operators). Let k ∈ L2(R2)
be fixed. Then the integral operator Lk given by (C.4) defines a bounded map-
ping of L2(R) into itself, with operator norm ‖Lk‖ ≤ ‖k‖2.

Proof. Suppose that k ∈ L2(R2), and define kx(y) = k(x, y). Then, by Fubini’s
Theorem, kx ∈ L2(R) for a.e. x. Hence, if f ∈ L2(R), then

Lkf(x) = 〈kx, f̄ 〉 =

∫
kx(y) f(y) dy

exists for almost every x.
To see why Lkf is a measurable and square-integrable function of x, con-

sider first the case where f and k are both nonnegative. Then k(x, y) f(y) is
a measurable function on R2, so Tonelli’s Theorem tells us that Lkf(x) =∫

k(x, y) f(y) dy is a measurable function of x. We estimate its L2-norm by
applying the Cauchy–Bunyakowski–Schwarz Inequality:

‖Lkf‖2
2 =

∫
|Lkf(x)|2 dx

=

∫ ∣∣∣∣
∫

k(x, y) f(y) dy

∣∣∣∣
2

dx

≤

∫ (∫
|k(x, y)|2 dy

) (∫
|f(y)|2 dy

)
dx

=

∫ ∫
|k(x, y)|2 dy ‖f‖2

2 dx

= ‖k‖2
2 ‖f‖

2
2 < ∞.

Hence Lkf ∈ L2(R).
Now suppose that f ∈ L2(R) and k ∈ L2(R2) are arbitrary, and write

f = (f+

1 −f−
1 )+i(f+

2 −f−
2 ) and k = (k+

1 −k−
1 )+i(k+

2 −k−
2 ), where each function

f±
ℓ and k±

j is nonnegative. Then, by the work above, each function Lk±

j
(f±

ℓ )

is measurable and belongs to L2(R). Since Lkf is a finite linear combination
of the sixteen functions Lk±

j
(f±

ℓ ), we conclude that Lkf is measurable and

belongs to L2(R).
Now that we know that Lkf is measurable, we can follow exactly the

same estimates as were used in the nonnegative case to show that ‖Lkf‖2 ≤
‖k‖2 ‖f‖2. Hence Lk is a bounded mapping of L2(R) into itself, with operator
norm ‖Lk‖ ≤ ‖k‖2. ⊓⊔

The next result, originally formulated in [Sch11], is often called Schur’s
Test (not to be confused with Schur’s Lemma). Here we formulate Schur’s
Test for boundedness of integral operators, but it is instructive to compare
this result to Problem C.7, which essentially is Schur’s Test for finite matrices.
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Theorem C.20 (Schur’s Test). Assume that k is a measurable function
on R2 that satisfies the mixed-norm conditions

C1 = ess sup
x∈R

∫
|k(x, y)| dy < ∞,

C2 = ess sup
y∈R

∫
|k(x, y)| dx < ∞.

(C.5)

Then the integral operator Lk given by (C.4) defines a bounded mapping of
L2(R) into itself, with operator norm ‖Lk‖ ≤ (C1C2)

1/2.

Proof. As in the proof of Theorem C.19, measurability of Lkf is most easily
shown by first considering nonnegative f, k, and then extending to the general
case. We omit the details and assume that Lkf is measurable for all f ∈ L2(R).
Then, by applying the Cauchy–Bunyakowski–Schwarz Inequality, we have

‖Lkf‖2
2 =

∫
|Lkf(x)|2 dx

=

∫ ∣∣∣∣
∫

k(x, y) f(y) dy

∣∣∣∣
2

dx

≤

∫ (∫
|k(x, y)|1/2 · |k(x, y)|1/2 |f(y)| dy

)2

dx

≤

∫ (∫
|k(x, y)| dy

) (∫
|k(x, y)| |f(y)|2 dy

)
dx

≤

∫
C1

∫
|k(x, y)| |f(y)|2 dy dx

= C1

∫
|f(y)|2

∫
|k(x, y)| dx dy

≤ C1

∫
|f(y)|2 C2 dy = C1C2 ‖f‖

2
2,

where we have used Tonelli’s Theorem to interchange the order of integration.
Thus Lk is bounded and ‖Lk‖ ≤ (C1C2)

1/2. ⊓⊔

The next exercise shows that the hypotheses of Schur’s Test actually yield
boundedness on every Lp(R), not just for p = 2.

Exercise C.21. Show that if k satisfies the conditions (C.5), then Lk is a
bounded mapping of Lp(R) into itself for every 1 ≤ p ≤ ∞, with ‖Lk‖ ≤

C
1/p′

1 C
1/p
2 .

Remark C.22. If we assume only that k is measurable and that C2 < ∞
(with no hypothesis about C1), then we have that Lk : L1(R) → L1(R) is



C.2 Some Useful Operators 309

a bounded mapping. Similarly, if C1 < ∞ then Lk : L∞(R) → L∞(R) is
bounded. Further, the proofs of these two particular “endpoint cases” are
quite simple. Exercise C.21 says that if C1 and C2 are both finite, then not
only do we have boundedness for the straightforward endpoint cases L1(R)
and L∞(R), but we can also prove the more difficult result of boundedness on
Lp(R) for each 1 ≤ p ≤ ∞. This type of extension problem is very common,
and indeed there is an entire theory of interpolation theorems that deal with
similar extension issues, see [BeL76]. One basic interpolation theorem is the
Riesz–Thorin Theorem, which is discussed in Section 2.3.

C.2.4 Convolution

Convolution is considered in detail in Section 1.3. Here we give another view
of convolution by considering it to be a special type of an integral operator.
In particular, the convolution of f and g is (f ∗ g)(x) =

∫
f(y) g(x − y) dy,

whenever this is defined. With g fixed, the mapping f 7→ f ∗ g is the integral
operator Lk whose kernel is k(x, y) = g(x − y).

Exercise C.23. Use Schur’s Test to prove the following version of Young’s
Inequality (compare Exercise 1.25): If 1 ≤ p ≤ ∞, then

∀ f ∈ Lp(R), ∀ g ∈ L1(R), ‖f ∗ g‖p ≤ ‖f‖p ‖g‖1.

As a consequence, L1(R) is closed under convolution and is an example of
a Banach algebra (see Definition C.28).

Additional Problems

C.9. Choose λ ∈ ℓ∞, and set δ = infn |λn|. Define Mλ as in Exercise C.14,
and prove the following.

(a) Each λn is an eigenvalue for Mλ with corresponding eigenvector en.

(b) Mλ is injective if and only if λn 6= 0 for every n.

(c) Mλ is surjective if and only if δ > 0.

(d) If δ = 0 but λn 6= 0 for every n then range(Mλ) is a dense but proper
subspace of H.

(e) Mλ is unitary if and only if |λn| = 1 for every n.

C.10. Let φ ∈ L∞(R) be fixed, and let Mφ be defined as in Exercise C.15.
Fix 1 ≤ p ≤ ∞.

(a) (a) Determine a necessary and sufficient condition on φ that implies that
Mφ : Lp(R) → Lp(R) is injective.

(b) Determine a necessary and sufficient condition on φ that implies that
Mφ : Lp(R) → Lp(R) is surjective.

(c) Show directly that if Mφ is injective but not surjective then the inverse
mapping M−1

φ : range(Mφ) → Lp(R) is unbounded.
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C.3 The Space B(X, Y )

Now we turn our attention to the space B(X, Y ) of all bounded linear maps
from X into Y, which was introduced in Definition C.2.

Exercise C.24. Let X and Y be normed spaces.

(a) B(X, Y ) is a vector space, and the operator norm is a norm on B(X, Y ).

(b) If Y is a Banach space, then B(X, Y ) is a Banach space with respect to
operator norm.

Consequently, if X is any normed space, then its dual space X∗ = B(X, C)
is a Banach space.

In addition to operations of vector addition and scalar multiplication, there
is a third operation that we can perform with operators, namely composition.

Exercise C.25. Prove that the operator norm is submultiplicative, i.e., if A ∈
B(X, Y ) and B ∈ B(Y, Z), then BA ∈ B(X, Z), and

‖BA‖ ≤ ‖B‖ ‖A‖. (C.6)

In particular, B(X) is closed under compositions, and is an example of a
noncommutative Banach algebra (see Definition C.28).

The following useful exercise shows that a bounded operator that is defined
on a dense subspace of a normed space can be extended to the entire space.

Exercise C.26 (Extension of Bounded Operators). Let Y be a dense
subspace of a normed space X, and let Z be a Banach space. Let L ∈ B(Y, Z)
be given.

(a) Show that there exists a unique operator L̃ ∈ B(X, Z) whose restriction

to Y is L. Prove that ‖L̃‖ = ‖L‖.

(b) Show that if L : Y → range(L) is a topological isomorphism, then

L̃ : X → range(L) is a topological isomorphism.

C.4 Banach Algebras

We have seen some examples of Banach spaces that, in addition to be-
ing complete normed vector spaces, are also are closed under an additional
“multiplication-like” operation. These are examples of Banach algebras, the
precise definition of which is as follows.

Definition C.27 (Algebra). An algebra over a field K is a vector space A
over K such that for each x, y ∈ A there exists a unique product xy ∈ A that
satisfies the following for all x, y, z ∈ A and α ∈ K:

(a) (xy)z = x(yz),
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(b) x(y + z) = xy + xz and (x + y)z = xz + yz, and

(c) α(xy) = (αx)y = x(αy).

If K = R then A is a real algebra; if K = C then A is a complex algebra.
If xy = yx for all x, y ∈ A then A is commutative.
If there exists an element e ∈ A such that ex = xe = x for every x ∈ A

then A is an algebra with identity.

Definition C.28 (Banach Algebra). A normed algebra is a normed linear
space A that is an algebra and also satisfies

∀x, y ∈ A, ‖xy‖ ≤ ‖x‖ ‖y‖.

A Banach algebra is a normed algebra that is a Banach space, i.e., it is a
complete normed algebra.

Here are the examples of Banach algebras that we have seen so far in this
appendix, plus some other examples from Section 1.3.

Exercise C.29. (a) L1(R) is a commutative Banach algebra under convolu-
tion. However, it does not have an identity (see Exercise 1.27).

(b) If X is a Banach space, then B(X) is a noncommutative Banach algebra
with identity under composition of operators.

(c) Cb(R) is a commutative Banach algebra with identity under the oper-
ation of pointwise products of functions, i.e., (fg)(x) = f(x)g(x).

(d) C0(R) is a commutative Banach algebra without identity under the
operation of pointwise products of functions.

As in abstract ring theory, the concept of an ideal plays an important role
in the theory of Banach algebras. Ideals are the black holes of the algebra,
sucking any product of an algebra element with an ideal element into the
ideal.

Definition C.30 (Ideals). Let A be a Banach algebra.

(a) A subspace I of A is a left ideal in A if xy ∈ I whenever x ∈ A and y ∈ I.

(b) A subspace I of A is a right ideal in A if yx ∈ I whenever x ∈ A and
y ∈ I.

(c) A subspace I of A is a two-sided ideal, or simply an ideal in A if xy, yx ∈ I
whenever x ∈ A and y ∈ I.

For example, the space Cc(R) is an ideal in C0(R) under the operation
of pointwise multiplication of functions. By Exercise A.63, we also know that
Cc(R) is a dense subspace of C0(R). However, not all ideals are dense sub-
spaces. For example, if E ⊆ R, then I = {f ∈ C0(R) : f(x) = 0 for all x ∈ E}
is a proper, closed ideal in C0(R).

Exercise C.31. Let I be an ideal in a commutative Banach algebra A.
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(a) Prove that if x ∈ A, then xA = {xy : y ∈ A} is an ideal in A, called the
ideal generated by x.

(b) Give a specific example that shows that x need not belong to xA.

(c) Show that if I is an ideal in A, then so is its closure I.

Some Banach algebras also have an additional operation that has proper-
ties similar to that of conjugation of complex numbers.

Definition C.32 (Involution). An involution on a Banach algebra A is a
mapping x 7→ x∗ of A into itself that satisfies the following for all x, y ∈ A
and all scalars α ∈ C:

(a) (x∗)∗ = x,

(b) (xy)∗ = y∗x∗,

(c) (x + y)∗ = x∗ + y∗, and

(d) (αx)∗ = ᾱx∗.

Exercise C.33. Given f ∈ L1(R), define f̃(x) = f(−x). Show that f 7→ f̃
defines an involution on L1(R) with respect to convolution.

Another example of an involution is the adjoint operation on B(H), see
Section C.6 below.

C.5 Some Dual Spaces

In this section we consider the dual space of a Hilbert space and the dual
space of the Lebesgue space Lp(E).

C.5.1 The Dual of a Hilbert Space

If H is a Hilbert space and g ∈ H is fixed, then the Cauchy–Bunyakowski–
Schwarz Inequality implies that µg : H → C given by µg : f 7→ 〈f, g〉 is
a bounded linear functional on H. The Riesz Representation Theorem for
Hilbert spaces asserts that every bounded linear functional has this form.
Consequently, every Hilbert space is “self-dual.”

Exercise C.34 (Riesz Representation Theorem). Given g ∈ H, define
µg : H → C by µg : f 7→ 〈f, g〉.

(a) Show that µg ∈ H∗ for each g ∈ H, and that

‖g‖ = ‖µg‖ = sup
‖f‖=1

|〈f, g〉|.

(b) For each µ ∈ H∗, show there exists a unique g ∈ H such that µ = µg.
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(c) Define T : H → H∗ by T (g) = µg. Prove that T is an antilinear isometric
bijection of H onto H∗. In particular, µαg+βh = ᾱµg + β̄µh.

For the specific case of ℓ2 or L2(E), the Riesz Representation Theorem
takes the following form.

Corollary C.35. (a) If µ is a bounded linear functional on ℓ2(I), then there
exists a unique y = (yk)k∈I ∈ ℓ2(I) such that

µ : x 7→
∑

k∈I

xkȳk = 〈x, y〉, x = (xk)k∈I ∈ ℓ2(I). (C.7)

(b) If µ is a bounded linear functional on L2(E), then exists a unique
g ∈ L2(E) such that

µ : f 7→

∫

E

f(x) g(x) dx = 〈f, g〉, f ∈ L2(E). (C.8)

We usually identify the functional µ ∈ H∗ with the element g ∈ H that
satisfies µ = µg. However, it is important to note that this identification
g 7→ µg is antilinear. On the other hand, the examples given in equations (C.7)
and (C.8) illustrate that this antilinearity is a natural consequence of the
definition of the inner product. For this reason, it is most convenient for us to
consider the pairing of a vector f in a normed space X with a linear functional
µ on X to be a generalization of the inner product on a Hilbert space, i.e., it is
a sesquilinear form that is linear as a function of f but antilinear as a function
of µ. We therefore adopt the following notations for denoting the action of a
linear functional on a vector.

Notation C.36 (Notation for Linear Functionals). Let X be a normed
linear space. Given a fixed linear functional µ : X → C, we use two notations
to denote the image of f under µ.

(a) We write
µ(f)

to denote the image of f under µ, with the understanding that this nota-
tion is linear in both f and µ, i.e.,

µ(αf + βg) = αµ(f) + βµ(g)

and
(αµ + βν)(f) = αµ(f) + βν(f).

(b) We write
〈f, µ〉

to denote the image of f under µ, with the understanding that this nota-
tion is linear in f but antilinear in µ, i.e.,
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〈αf + βg, µ〉 = α〈f, µ〉 + β〈g, µ〉

while
〈f, αµ + βν〉 = ᾱ〈f, µ〉 + β̄〈f, ν〉. (C.9)

This will be the preferred notation throughout this volume.

C.5.2 The Dual of Lp(E)

The fact that the dual space of the Hilbert space L2(E) is (antilinearly) iso-
morphic to L2(E) has a generalization to other Lp spaces. By Hölder’s Inequal-

ity, if g ∈ Lp′

(E) is fixed, then 〈f, µg〉 =
∫

E f(x) g(x) dx defines a bounded
linear functional µg on Lp(E), and the following exercise shows that the op-

erator norm of µg equals the Lp′

-norm of the function g.

Exercise C.37. Let E be a Lebesgue measurable subset of R, and fix 1 ≤
p ≤ ∞. For each g ∈ Lp′

(E), define µg : Lp(E) → C by

〈f, µg〉 =

∫

E

f(x) g(x) dx, f ∈ Lp(E). (C.10)

Show that µg ∈ Lp(E)∗ and ‖µg‖ = ‖g‖p′ .

Although we will not prove it, the next theorem states that if 1 ≤ p < ∞
then every bounded linear functional on Lp(E) has the form µg for some

g ∈ Lp′

(E). Consequently, Lp(E)∗ and Lp′

(E) are (antilinearly) isomorphic.
The standard proof of Theorem C.38 relies on the Radon–Nikodym Theorem
(see Theorem D.54).

Theorem C.38 (Dual Space of Lp(E)). Let E be a Lebesgue measurable
subset of R, and fix 1 ≤ p < ∞. For each g ∈ Lp′

(E), define µg as in equa-

tion (C.10). Then the mapping T : Lp′

(E) → Lp(E)∗ defined by T (g) = µg is

an antilinear isometric isomorphism of Lp′

(E) onto Lp(E)∗.

Remark C.39. Theorem C.38 generalizes to Lp(X) for any measure space
(X, µ, Σ) when 1 < p < ∞. It also generalizes to L1(X) if µ is σ-finite,
see [Fol99] for details. In particular, an analogue of Theorem C.38 holds for
the ℓp spaces.

If p = ∞, then the map T : L1(E) → L∞(E)∗ given by T (g) = µg is
still an antilinear isometry, but it is not surjective. In this sense, L1(E) has
a canonical image within L∞(E)∗, but there are functionals in L∞(E)∗ that
do not correspond to elements of L1(E), compare Problem E.8.

Because of Theorem C.38, we usually identify Lp′

(E) with Lp(E)∗ when p
is finite, and also identify L1(E) with its image in L∞(E)∗. Abusing notation,
we write
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Lp(E)∗ = Lp′

(E) for 1 ≤ p < ∞,

and
L1(E) ⊆ L∞(E)∗,

with the understanding that these hold in the sense of the identification of
g ∈ Lp′

(E) with µg ∈ Lp(E)∗.

C.5.3 The Relation between Lp
′

(E) and Lp(E)∗

We have chosen to consider the relation between Lp′

(E) and Lp(E)∗ in a
manner that most directly generalizes the inner product on a Hilbert space
and the characterization of the dual space of a Hilbert space as given by
the Riesz Representation Theorem. With our choice, we write the action of
µ ∈ Lp(E)∗ on f ∈ Lp(E) as 〈f, µ〉, and regard this as a sesquilinear form,
linear in f but antilinear in µ. With this notation, the following statements
hold (we restrict our attention in this discussion to 1 ≤ p < ∞).

(a) Lp(E), Lp′

(E), and Lp(E)∗ are linear spaces.

(b) Lp(E)∗ is the space of bounded linear functionals on Lp(E).

(c) T : Lp′

(E) → Lp(E)∗ given by T (g) = µg is an isometric isomorphism, but
is antilinear.

To illustrate one advantage of this approach, consider the special case p = 2.
Since L2(E) is both a Hilbert space and a particular Lp space, we have in-
troduced two different uses of the notation 〈·, ·〉 with regard to L2(E). On
the one hand, 〈f, g〉 denotes the inner product of f, g ∈ L2(E), while, on the
other hand, 〈f, µ〉 denotes the action of µ ∈ L2(E)∗ on f ∈ L2(E). Fortu-
nately, 〈f, g〉 = 〈f, µg〉, so our linear functional notation is not in conflict with
our inner product notation. This notationally simplifies certain calculations.
For example, if A : L2(E) → L2(E) is unitary then we have for f, g ∈ L2(E)
that 〈f, g〉 = 〈Af, Ag〉, and also 〈f, µg〉 = 〈Af, µAg〉. However, we do have to
accept that our identification of g with µg is antilinear rather than linear.

There are various alternative approaches, each with their own advantages
and disadvantages, that we discuss now.

A second choice is to base our notation on the usual convention that if
ν is a linear functional, then the notation ν(f) is linear in both f and ν. If
we follow this convention, then we associate a function g ∈ Lp′

(E) with the
functional νg : Lp(E) → C defined by

νg(f) =

∫

E

f(x) g(x) dx.

Using this notation, the following facts hold.

(a) Lp(E), Lp′

(E), and Lp(E)∗ are linear spaces.

(b) Lp(E)∗ is the space of bounded linear functionals on Lp(E).
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(c) U : Lp′

(E) → Lp(E)∗ given by U(g) = νg is an isometric isomorphism,
and is linear.

This is a natural choice except for the fact that the notation ν(f) is not
an extension of the inner product on L2(E). Specifically, although we iden-
tify g ∈ L2(E) with νg ∈ L2(E)∗, the inner product 〈f, g〉 does not coincide
with νg(f). Hence for p = 2, if A : L2(E) → L2(E) is unitary, then while we
do have 〈f, g〉 = 〈Af, Ag〉, we do not have equality of νg(f) and νAg(Af).
Another consequence is that if L : L2(E) → L2(E) is linear, then the ad-
joint L∗ of L defined by the requirement that 〈Lf, g〉 = 〈f, L∗g〉 is different
than the adjoint defined by the requirement that νg(Lf) = νL∗g(f) (adjoints
are considered in Section C.6). Essentially, we end up with different notions
for concepts on L2(E) depending on whether we regard L2(E) as a Hilbert
space under the inner product, or a member of the class of Banach spaces
Lp(E) with the identification between Lp(E)∗ and Lp′

(E) given by U. The
isomorphism U : L2(E) → L2(E)∗ is different from the one given by the Riesz
Representation Theorem (Exercise C.34).

A third possibility is to let the functionals on Lp(E) be antilinear in-
stead of linear. For example, we can associate g ∈ Lp′

(E) with the functional
ρg : Lp(E) → C given by

[f, ρg] =

∫

E

f(x) g(x) dx.

Then the dual space is a space of antilinear functionals, i.e., the dual space is

Lp(E)¬ = {ρ : Lp(E) → C : ρ is bounded and antilinear}.

In this case, we have the following facts.

(a) Lp(E), Lp′

(E), and Lp(E)¬ are linear spaces.

(b) Lp(E)¬ is the linear space whose elements are the bounded antilinear
functionals on Lp(E).

(c) V : Lp′

(E) → Lp(E)¬ given by V (g) = ρg is an isometric isomorphism,
and is linear.

While V is linear, we again have a disagreement between the notation [·, ·]
and the inner product on L2(E).

Despite the fact that our discussion of notation has been quite lengthy,
in the end the difference between these choices comes down to nothing more
than convenience — each choice makes certain formulas “pretty” and others
“unpleasant.” As our main concern is the use of these notations in harmonic
analysis, our choice is motivated by the formulas of harmonic analysis, and
in particular the Parseval formula for the Fourier transform. We choose a
notation that directly generalizes the inner product, and consequently obtain
the simplest notational representation for generalizing the Fourier transform
to distributions and measures (see Chapters 3 and 4).


