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E.7 Alaoglu’s Theorem

If X is a normed space, then the closed unit ball in X or X∗ is compact if and
only if X is finite-dimensional (Problem A.25). Even so, Alaoglu’s Theorem
states that the closed unit ball in X∗ is compact in the weak* topology. We
will prove this theorem in this section.

E.7.1 Product Topologies

For the case of two topological spaces X and Y , the product topology on
X × Y was defined in Section A.6. We review here some facts about the
product topology on arbitrary products of topological spaces.

Definition E.44 (Product Topology). Let J be a nonempty index set, and
for each j ∈ J let Xj be a nonempty topological space. Let X be the Cartesian
product of the Xj :

X =
∏

j∈J

Xj =
{
{xj}j∈J : xj ∈ XJ for j ∈ J

}
,

where a sequence F = {xj}j∈J denotes the mapping

F : J →
⋃

j∈J

Xj ,

j 7→ xj .

The Axiom of Choice states that X is nonempty. The product topology on X

is the topology generated by the collection

B =

{∏

j∈J

Uj : Uj open in Xj , and Uj = Xj except for finitely many j

}
.

Since B is closed under finite intersections, it forms a base for the product
topology. Thus, the open sets in X are unions of elements of B.

For each j, we define the canonical projection of X onto Xj to be the
mapping πj : X → Xj defined by

πj

(
{xi}i∈J

)
= xj .

If Uj is an open subset of Xj and we define Ui = Xi for all i 6= j, then

π−1

j (Uj) =
∏

i∈J

Ui, (E.8)

which is open in X . Hence each πj is a continuous map. Moreover, if T is
any other topology on X such that each canonical projection πj is continu-
ous then T must contain all of the sets given by equation (E.8). Since finite
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intersections of those sets form the base B, we conclude that T must contain
the product topology on X . Thus, the product topology on X is the weakest

topology such that each canonical projection πj is continuous. This is another
example of a general kind of weak topology determined by the requirement
that a given class of mappings on X be continuous.

Tychonoff’s Theorem is a fundamental result on compact sets in the prod-
uct topology. The proof uses the Axiom of Choice, see [Fol99]. In fact, Kelley
proved in 1950 that Tychonoff’s Theorem is equivalent to the Axiom of Choice
[Kel50].

Theorem E.45 (Tychonoff’s Theorem). For each j ∈ J , let Xj be a
topological space. If each Xj is compact, then X =

∏
j∈J Xj is compact in the

product topology.

E.7.2 Statement and Proof of Alaoglu’s Theorem

Now we can prove Alaoglu’s Theorem (which is also known as the Banach–

Alaoglu Theorem).

Theorem E.46 (Alaoglu’s Theorem). Let X be a normed linear space,

and let

B∗ = {µ ∈ X∗ : ‖µ‖ ≤ 1}

be the closed unit ball in X∗. Then B∗ is compact in X∗ with respect to the

weak* topology on X∗.

Proof. For each x ∈ X , let

Dx = {z ∈ C : |z| ≤ ‖x‖}

be the closed unit ball of radius ‖x‖ in the complex plane. Each Dx is compact
in C, so Tychonoff’s Theorem implies that D =

∏
x∈X Dx is compact in the

product topology.
The elements of D are sequences µ = {µx}x∈X where µx ∈ Dx for each x.

More precisely, µ is a mapping of X into
⋃

x∈X Dx = C that satisfies |µx| ≤
‖x‖ for all x ∈ X . Thus µ is a functional on X , although it need not be linear.
Since µ is a functional, we adopt our standard notation and write 〈x, µ〉 = µx.
Then we have

|〈x, µ〉| ≤ ‖x‖, x ∈ X.

If µ is linear then we have ‖µ‖ ≤ 1, so µ ∈ B∗. In fact B∗ consists exactly of
those elements of D that are linear.

Our next goal is to show that B∗ is closed with respect to the product
topology restricted to D. Suppose that {µi}i∈I is a net in B∗ and µi → µ ∈ D.
Since the canonical projections are continuous in the product topology, we
have

〈x, µi〉 = πx(µi) → πx(µ) = 〈x, µ〉, x ∈ X. (E.9)
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In particular, given x, y ∈ X and a, b ∈ C, we have

〈ax + by, µi〉 → 〈ax + by, µ〉.

However, each µi is linear since it belongs to B∗, so we also have

〈ax + by, µi〉 = a 〈x, µi〉 + b 〈y, µi〉 → a 〈x, µ〉 + b 〈y, µ〉.

Therefore 〈ax+ by, µ〉 = a 〈x, µ〉+ b 〈y, µ〉, so µ is linear and therefore belongs
to B∗. Hence B∗ is a closed subset of D. Since D is compact in the product
topology, we conclude that B∗ is also compact in the product topology (see
Problem A.21).

Now we will show that the product topology on D restricted to B∗ is the
same as the weak* topology on X restricted to B∗. To do this, let T denote the
product topology on D restricted to B∗, and let σ denote the weak* topology
on X restricted to B∗. Suppose that {µi}i∈I is a net in B∗ and µi → µ with
respect to the product topology on D. We saw above that that this implies

that µ ∈ B∗ and µi
w*
−→µ, see equation (E.9). Hence every subset of B∗ that

is closed with respect to σ is closed with respect to T , so we have σ ⊆ T .
Conversely, fix any x ∈ X and suppose that {µi}i∈I is a net in B∗ such

that µi
w*
−→µ. Then

πx(µi) = 〈x, µi〉 → 〈x, µ〉 = πx(µ),

so the canonical projection πx is continuous with respect to the weak* topol-
ogy restricted to B∗. However, T is the weakest topology with respect to
which each canonical projection is continuous, so T ⊆ σ.

Thus, T = σ. Since we know that B∗ is compact with respect to T , we
conclude that it is also compact with respect to σ. That is, B∗ is compact
with respect to the weak* topology on X∗ restricted to B∗, and this implies
that it is compact with respect to the weak* topology on X∗. ut

As a consequence, if X is reflexive then the closed unit ball in X∗ is
weakly compact. In particular, the closed unit ball in a Hilbert space is weakly
compact. On the other hand, the space c0 is not reflexive, and its closed unit
ball is not weakly compact (Problem E.9).

E.7.3 Implications for Separable Spaces

Alaoglu’s Theorem has some important consequences for separable spaces.
Although we will restrict our attention here to normed spaces, many of these
results hold more generally, see [Rud91].

We will need the following lemma.

Lemma E.47. Let T1, T2 be topologies on a set X such that:

(a) X is Hausdorff with respect to T1,
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(b) X is compact with respect to T2, and

(c) T1 ⊆ T2.

Then T1 = T2.

Proof. Suppose that F ⊆ X is T2-closed. Then F is T2-compact since X is T2-
compact (see Problem A.21). Suppose that {Uα}α∈J is any cover of F by sets
that are T1-open. Then each of these sets is also T2-open, so there must exist
a finite subcollection that covers F . Hence F is T1-compact, and therefore
is T1-closed since T1 is Hausdorff (again see Problem A.21). Consequently,
T2 ⊆ T1. ut

Now we can show that a weak*-compact subset of the dual space of a
separable normed space is metrizable.

Theorem E.48. Let X be a separable normed space, and fix K ⊆ X∗. If K is

weak*-compact, then the weak* topology of X∗ restricted to K is metrizable.

Proof. Let {xn}n∈N be a countable dense subset of X .
Each x ∈ X determines a seminorm ρx on X∗ given by

ρx(µ) = |〈x, µ〉|, µ ∈ X∗.

The family of seminorms {ρx}x∈X induces the weak* topology σ(X∗, X)
on X∗. The subfamily {ρxn

}n∈N also induces a topology on X∗, which we will
call T . Since this is a smaller family of seminorms, we have T ⊆ σ(X∗, X).

Suppose that µ ∈ X∗ and ρxn
(µ) = 0 for every n ∈ N. Then we have

〈xn, µ〉 = 0 for every n. Since {xn}n∈N is dense in X and µ is continuous,
this implies that µ = 0. Consequently, by Exercise E.17, the topology T is
Hausdorff. Thus T is a Hausdorff topology induced from a countable fam-
ily of seminorms, so Exercise E.24 tells us that this topology is metrizable.
Specifically, T is induced from the metric

d(µ, ν) =

∞∑

n=1

2−n ρxn
(µ − ν)

1 + ρxn
(µ − ν)

, µ, ν ∈ X∗.

Let T |K and σ(X∗, X)|K denote these two topologies restricted to the
subset K. Then we have that K is Hausdorff with respect to T |K , and is
compact with respect to σ(X∗, X)|K . Lemma E.47 therefore implies that
T |K = σ(X∗, X)|K . The topology TK is metrizable, as it is formed by re-
stricting the metric d to K. Hence σ(X∗, X)|K is metrizable as well. ut

In the course of the proof of Theorem E.48 we constructed a metrizable
topology T on X∗, and showed that the restrictions of T and σ(X∗, X) to
any weak*-compact set are equal. This does not show that T and σ(X∗, X)
are equal. In fact, if X is infinite-dimensional, the weak* topology on X is not
metrizable, see [Rud91, p. 70].

Now we can prove a stronger form of Alaoglu’s Theorem for separable
normed spaces. Specifically, we show that if X is normed and separable, then
any bounded sequence in X∗ has a weak*-convergent subsequence.
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Theorem E.49. If X is a separable normed space then the closed unit ball

in X∗ is sequentially weak*-compact. That is, if {µn}n∈N is any sequence

in X∗ with ‖µn‖ ≤ 1 for n ∈ N, then there exists a subsequence {µnk
}k∈N and

µ ∈ X∗ such that µnk

w*
−→µ.

Proof. By Alaoglu’s Theorem, the closed unit ball B∗ in X∗ is weak*-compact.
Since X is separable, Theorem E.48 implies that the weak* topology on B∗

is metrizable. Finally, since B∗ is a compact subset of a metric space, Theo-
rem A.70 implies that it is sequentially compact. ut

Corollary E.50. If X is a reflexive normed space then the closed unit ball
in X∗ is sequentially weakly compact. In particular, the closed unit ball in a

separable Hilbert space is sequentially weakly compact.

In general, however, a weakly compact subset of X need not be metrizable
in the weak topology, even if X is separable. For example, [Con90, Prop. 5.2]
shows that the weak topology on closed unit ball in `1 is not metrizable.

There are several deep results on weak compactness that we will not elab-
orate upon. For example, the Eberlein-Šmulian Theorem states that a subset
of a Banach space is weakly compact if and only if it is weakly sequentially
compact, see [Con90, Thm. 13.1].

Additional Problems

E.7. This problem will use Alaoglu’s Theorem to construct an element of
(`∞)∗ that does not belong to `1.

(a) For each n ∈ N, define µn : `∞ → C by

〈x, µn〉 =
x1 + · · · + xn

n
, x = (x1, x2, . . . ) ∈ `∞.

Show that µn ∈ (`∞)∗ and ‖µn‖ ≤ 1.

(b) Use Alaoglu’s Theorem to show that there exists a µ ∈ (`∞)∗ that is
an accumulation point of {µn}n∈N.

(c) Show that µ 6= x̂ for any x ∈ `1, where x̂ is the image of x under the
natural embeddings of `1 into (`1)∗∗ = (`∞)∗.

E.8. Suppose that S is a subspace of C[0, 1] and that S is closed as a subspace
of L2[0, 1]. Prove the following statements.

(a) S is closed in C[0, 1], and the L∞ and L2 norms are equivalent on S.

(b) For each y ∈ [0, 1], there exists ky ∈ L2[0, 1] such that f(y) =∫
f(x) ky(x, y) dy.

(c) Weak convergence in S coincides with strong convergence in S.

(d) The closed unit ball in S is strongly compact, and therefore S is finite-
dimensional.

E.9. Show that the closed unit ball {x ∈ c0 : ‖x‖∞ ≤ 1} in c0 is not weakly
compact.
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