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A.7 Convergence and Continuity in Topological Spaces

In large part, the importance of topologies in this volume is that they provide
notions of convergence and continuity. Indeed, a basic philosophy that we
will expand upon in this section is that topologies and convergence criteria
are equivalent. Thus, though many of the spaces that we will encounter are
defined in terms of norms or families of seminorms (i.e., convergence criteria),
this is equivalent to defining them in terms of a topology.

A.7.1 Convergence

In metric spaces, convergence is defined with respect to sequences indexed by
the natural numbers (Definition A.2). In a general topological space, conver-
gence must be formulated in terms of nets instead of countable sequences.

Definition A.43 (Directed Sets, Nets). A directed set is a set I together
with a relation ≤ on I such that:

(a) ≤ is reflexive: i ≤ i for all i ∈ I ,

(b) ≤ is transitive: i ≤ j and j ≤ k implies i ≤ k, and

(c) for any i, j ∈ I , there exists k ∈ I such that i ≤ k and j ≤ k.

A net in a set X is a sequence {xi}i∈I of elements of X indexed by a
directed set (I,≤).

Remark A.44. By definition, a sequence {xi}i∈I is shorthand for the function
x : I → X defined by x(i) = xi for i ∈ I . In particular, unlike a set, a sequence
allows repititions of the xi. Technically, we should be careful to distinguish
between a sequence {xi}i∈I and a set {xi : i ∈ I}, but it is usually clear from
context whether a sequence or a set is meant.

The set of natural numbers I = N under the usual ordering is one example
of a directed set, and hence every ordinary sequence indexed by the natural
numbers is a net. Another typical example is I = P(X), the power set of X ,
ordered by reverse inclusion, i.e.,

U ≤ V ⇐⇒ V ⊆ U.

Definition A.45 (Convergence with respect to a Net). Let X be a topo-
logical space, let {xi}i∈I be a net in X , and let x ∈ X be given. Then we say
that {xi}i∈I converges to x, and write xi → x, if for any open neighborhood
U of x there exists i0 ∈ I such that

i ≥ i0 =⇒ xi ∈ U.
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Next, we will define the notion of accumulation points of a subset of a
generic topological space and see how this definition can be reformulated in
terms of nets. We will also see that topologies induced from a metric have
the advantage that we only need to use convergence of ordinary sequences
indexed by N instead of general nets.

Definition A.46 (Accumulation Point). Let E be a subset of a topological
space X . Then a point x ∈ X is an accumulation point of E if every open
neighborhood of x contains a point of E other than x itself, i.e.,

U open and x ∈ U =⇒ E ∩ (U\{x}) 6= ∅.

Lemma A.47. If E is a subset of a topological space X and x ∈ X, then the

following statements are equivalent.

(a) x is an accumulation point of E.

(b) There exists a net {xi}i∈I contained in E\{x} such that xi → x.

If X is a metric space, then these statements are also equivalent to the

following.

(c) There exists a sequence {xn}n∈N contained in E\{x} such that xn → x.

Proof. (a) ⇒ (b). Assume that x is an accumulation point of E. Define

I =
{

U ⊆ X : U is open and x ∈ U
}

.

Exercise: Show that I is a directed set when ordered by reverse inclusion.
For each U ∈ I , by definition of accumulation point there exists a point

xU ∈ E ∩ (U\{x}). Then {xU}U∈I is a net in E\{x}, and we claim that
xU → x. To see this, fix any open neighborhood V of x. Set U0 = V , and
suppose that U ≥ U0. Then, by definition, U ∈ I and U ⊆ U0. Hence xU ∈
U ⊆ U0 = V . Therefore xU → x.

(b) ⇒ (a). Suppose that {xi}i∈I is a net in E\{x} and xi → x. Let U be
any open neighborhood of x. Then there exists an i0 such that xi ∈ U for all
i ≥ i0. Since xi 6= x, this implies that xi ∈ E ∩ (U\{x}) for all i0 ≥ i.

(a) ⇒ (c), assuming X is metric. Suppose that x is an accumulation point
of E. For each n ∈ N, the open ball B1/n(x) is an open neighborhood of x,
and hence there must exist some xn ∈ E ∩ (B1/n(x)\{x}). Therefore {xn}n∈N

is a sequence in E\{x}, and since d(x, xn) < 1/n, we have xn → x.

(c) ⇒ (b), assuming X is metric. This follows from the fact that every
countable sequence {xn}n∈N is a net. ut

We can now give an equivalent formulation of closed sets in terms of nets
and accumulation points.

Exercise A.48. Given a subset E of a topological space, prove that the fol-
lowing statements are equivalent.
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(a) E is closed, i.e., X\E is open.

(b) If x is an accumulation point of E, then x ∈ E.

(c) If {xi}i∈I is a net in E and xi → x ∈ X , then x ∈ E.

If X is a metric space, show that these are also equivalent to the following
statement.

(d) If {xn}n∈N is a sequence in E and xn → x ∈ X , then x ∈ E.

Now we can quantify the philosophy that topologies and convergence cri-
teria are equivalent. For arbitrary topologies, this requires that we use con-
vergence with respect to nets, but for topologies induced from a metric we are
able to use convergence of ordinary sequences indexed by the natural numbers.

Exercise A.49. Given two topologies T1, T2 on a set X , prove that the fol-
lowing statements are equivalent.

(a) T1 = T2, i.e.,

U is open with respect to T1 ⇐⇒ U is open with respect to T2.

(b) If {xi}i∈I is a net in E and x ∈ X , then

xi → x with respect to T1 ⇐⇒ xi → x with respect to T2.

If T1 is induced from a metric d1 on X , and T2 is induced from a metric d2

on X , show that these statements are also equivalent to the following.

(c) If {xn}n∈N is a sequence in E and x ∈ X , then

lim
n→∞

d1(xn, x) = 0 ⇐⇒ lim
n→∞

d2(xn, x) = 0.

Example A.50. An example of a topological space where it is important to
distinguish between convergence of ordinary sequences and convergence with
respect to nets is the sequence space `1 under the weak topology. This topology
will be defined precisely in Section E.6, but the important point for us at the
moment is that it can be shown that if {xn}n∈N is a sequence in `1 and xn → 0
with respect to the weak topology, then xn → 0 in norm, i.e., ‖x − xn‖1 → 0
(see [Con90, Prop. 5.2]). However, the weak topology on `1 is not the same as
the topology induced by the norm ‖·‖1. In particular, there exists a net {xi}i∈I

in `1 such that xi → 0 with respect to the weak topology, but xi →/ 0 with
respect to the norm topology. The moral is that when discussing convergence
in a topological space that is not a metric space, it is important to consider
nets instead of ordinary sequences.
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A.7.2 Continuity

Our next goal is to reformulate continuity of a function in terms of convergence
of nets or sequences. Recall that if f : X → Y and V ⊆ Y , then the preimage
of V is f−1(V ) = {x ∈ X : f(x) ∈ V }.

Definition A.51 (Continuity). Let X , Y be topological spaces. Then a
function f : X → Y is continuous if

V is open in Y =⇒ f−1(V ) is open in X.

We say that f is a topological isomorphism or a homeomorphism if f is a
bijection and both f and f−1 are continuous.

It will be convenient to restate continuity in terms of continuity at a point.

Definition A.52 (Continuity at a Point). Let X , Y be topological spaces
and let x ∈ X be given. Then a function f : X → Y is continuous at x if for
each open neighborhood V of f(x) in Y , there exists an open neighborhood
U of x in X such that U ⊆ f−1(V ).

Exercise A.53. Prove that f is continuous if and only if f is continuous at
each x ∈ X .

Now we can formulate continuity in terms of preservation of convergence of
nets. For the case of a metric space, this reduces to preservation of convergence
of sequences.

Lemma A.54. If X, Y be topological spaces, f : X → Y , and x ∈ X are

given, then the following statements are equivalent.

(a) f is continuous at x.

(b) For any net {xi}i∈I in X,

xi → x in X =⇒ f(xi) → f(x) in Y.

If X, Y are metric spaces, then these are also equivalent to the following.

(c) For any sequence {xn}n∈N in X,

xn → x in X =⇒ f(xn) → f(x) in Y.

Proof. (a) ⇒ (b). Assume that f is continuous at x ∈ X . Let {xi}i∈I be any
net in X such that xi → x. Let V be any open neighborhood of f(x). Then
by definition of continuity at a point, there exists an open neighborhood U
of x that is contained in f−1(V ). Hence, by definition of xi → x, there exists
an i0 ∈ I such that xi ∈ U ⊆ f−1(V ) for all i ≥ i0. Hence f(xi) ∈ V for all
i ≥ i0, which means that f(xi) → f(x).
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(b) ⇒ (a). Suppose that statement (a) fails, i.e., f is not continuous at
x ∈ X . Then by definition there exists an open neighborhood V of f(x) such
that f−1(V ) is not open in X . Hence no open neighborhood U of x can be
contained in f−1(V ). Therefore each open neighborhood U of x must contain
some point xU ∈ U\f−1(V ). In particular, f(xU ) /∈ V , and since f(x) ∈ V ,
we must have xU 6= x. Now let

I =
{

U : U is an open neighborhood of x
}

.

Then I is a directed set when ordered by reverse inclusion, so {xU}U∈I is a net
in X . We claim that xU → x. To see this, let W be any open set containing x,
and set U0 = W ∈ I . If U ≥ U0, then by definition U is an open neighborhood
of x and U ⊆ U0. Hence xU ∈ U ⊆ U0 = W . Therefore xU ∈ W for all
U ≥ U0, and this means xU → x.

However, f(xU ) does not converge to f(x) because V is an open neighbor-
hood of f(x) but V contains no points f(xU ). Hence statement (b) fails.

(c) ⇒ (a), assuming X is metric. The proof of (b) ⇒ (a) can essentially be
repeated. Alternatively, given an open V ⊆ Y , we can show that X\f−1(V )
is closed by showing that it contains all of its accumulation points, as follows.

Suppose that x is an accumulation point of X\f−1(V ). Then by Exer-
cise A.48, there exist xn ∈ X\f−1(V ) such that xn → x. By statement (c), this
implies f(xn) → f(x). However, f(xn) /∈ V and Y \V is a closed set. There-
fore we must have f(x) ∈ Y \V , and hence x ∈ X\f−1(V ). Thus X\f−1(V )
is closed, so f−1(V ) is open. ut

A.7.3 Equivalent Norms

Next we consider the equivalence of convergence criteria and topologies for
the case of normed spaces.

Definition A.55. Suppose that X is a normed linear space with respect to
a norm ‖ · ‖a and also with respect to another norm ‖ · ‖b. Then we say that
these norms are equivalent if there exist constants C1, C2 > 0 such that

∀ f ∈ X, C1 ‖f‖a ≤ ‖f‖b ≤ C2 ‖f‖a. (A.4)

We write ‖ · ‖a � ‖ · ‖b to denote that ‖ · ‖a and ‖ · ‖b are equivalent norms.

Theorem A.56. Let ‖ ·‖a and ‖ ·‖b be two norms on a vector space X. Then

the following statements are equivalent.

(a) ‖ · ‖a and ‖ · ‖b are equivalent norms.

(b) ‖ · ‖a and ‖ · ‖b induce the same topologies on X.

(c) ‖ · ‖a and ‖ · ‖b define the same convergence criterion. That is, if {xn}n∈N

is a sequence in X and x ∈ X, then

lim
n→∞

‖x − xn‖a = 0 ⇐⇒ lim
n→∞

‖x − xn‖b = 0.
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Proof. (a) ⇒ (c). This is immediate from the definition of equivalent norms.

(c) ⇒ (b). This follows from Exercise A.49.

(b) ⇒ (a). Assume that statement (b) holds. Let Ba
r (x) and Bb

r(x) denote
the open balls of radius r centered at x ∈ X with respect to ‖ · ‖a and ‖ · ‖b,
respectively. Since Ba

1
(0) is open with respect to ‖ · ‖a, statement (b) implies

that Ba
1
(0) is open with respect to ‖ · ‖b. Therefore, since 0 ∈ Ba

1
(0), there

must exist some r > 0 such that Bb
r(0) ⊆ Ba

1
(0).

Now choose any x ∈ X and any ε > 0. Then

(r − ε)

‖x‖b
x ∈ Bb

r(0) ⊆ Ba
1
(0),

so
∥

∥

∥

(r − ε) x

‖x‖b

∥

∥

∥

a
< 1.

Rearranging, this implies (r − ε) ‖x‖a < ‖x‖b. Since this is true for every ε,
we conclude that r ‖x‖a ≤ ‖x‖b.

A symmetric argument, interchanging the roles of the two norms, shows
that there exists an s > 0 such that ‖x‖b ≤ s ‖x‖a for every x ∈ X . Hence
the two norms are equivalent. ut

Given any finite-dimensional vector space X , we can define many norms
on X . In particular, the following norms are analogues of the `p norms defined
in Section A.4.

Exercise A.57. Let B = {x1, . . . , xd} be any basis for a finite-dimensional

vector space X , and let x =
∑d

k=1
ck(x) xk denote the unique expansion of

x ∈ X with respect to this basis (the vector [x]B = (c1(x), . . . , cd(x)) is called
the coordinate vector of x with respect to the basis B). Show that

‖x‖p =



















( d
∑

k=1

|ck(x)|p
)1/p

, 1 ≤ p < ∞,

max
k

|ck(x)|, p = ∞,

are norms on X , and that X is complete with respect to each of these norms.
Note that ‖x‖p is simply the `p norm of the coordinate vector [x]B.

It is not difficult to see that all of the norms defined in Exercise A.57
are equivalent. Although we will not prove it, it is an important fact that all

norms on a finite-dimensional space are equivalent.

Theorem A.58. If X is a finite-dimensional vector space, then any two

norms on X are equivalent. In particular, if ‖ · ‖ is any norm on X and

‖ · ‖p is any one of the norms constructed in Exercise A.57, then ‖ · ‖ � ‖ · ‖p.
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Additional Problems

A.16. (a) Let X be a Hausdorff topological space. Show that if a net {xi}i∈I

converges in X , then the limit is unique.

(b) Show that if X is not Hausdorff, then there exists a net {xi}i∈I in X
that has two distinct limits.

A.17. Let {xi}i∈I be a net in a Hausdorff topological space X . Show that if
xi → x in X , then either:

(a) there exists an open neighborhood U of x and some i0 ∈ I such that
xi = x for all i ≥ i0, or

(b) every open neighborhood U of x contains infinitely many distinct xi,
i.e., the set {xi : i ∈ I and xi ∈ U} is infinite.

A.18. Show that if (X, d1) and (Y, d2) are metric spaces, then

d
(

(f1, g1), (f2, g2)
)

= d1(f1, f2) + d2(g1, g2)

defines a metric on X × Y that induces the product topology. Conclude that
convergence in X × Y is componentwise convergence, i.e., (fn, gn) → (f, g) in
X × Y if and only if fn → f in X and gn → g in Y .

A.19. Let X be a vector space with a metric d. We say that the metric
is translation-invariant if d(f + h, g + h) = d(f, g) for every f , g, h ∈ X .
Show that vector addition is continuous in this case, i.e., (f, g) → f + g is a
continuous mapping of X × X into X .

A.20. Let X , Y be topological spaces. Let {(fi, gi)}i∈I be any net in X × Y ,
and suppose (f, g) ∈ X × Y . Show that (fi, gi) → (f, g) with respect to the
product topology on X × Y if and only if fi → f in X and gi → g in Y .


