3.9 Egoroff's Theorem

We know that pointwise convergence of functions does not imply uniform convergence, and likewise pointwise a.e. convergence does not imply L^{∞} norm convergence. A standard counterexample is the Shrinking Boxes of Example 3.62: $\chi_{[0,\frac{1}{k}]}$ converges pointwise a.e. to the zero function, but the convergence is not uniform. The functions $\chi_{[0,\frac{1}{k}]}$ are not continuous, but this is not the issue. For example,

$$f_k(x) = \begin{cases} 0, & x \le 0, \\ \text{linear}, & 0 < x < \frac{1}{2k}, \\ 1, & x = \frac{1}{2k}, \\ \text{linear}, & \frac{1}{2k} < x < \frac{1}{k}, \\ 0, & x \ge \frac{1}{k}. \end{cases}$$

is a continuous function and $f_k \to 0$ pointwise, but f_k does not converge uniformly to the zero function (see the illustration in Figure 3.1).

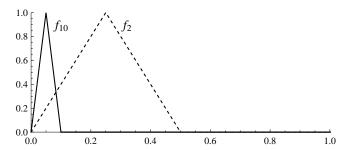


Fig. 3.1. Graphs of the functions f_2 (dashed) and f_{10} (solid).

However, if we allow ourselves to reduce the domain of these functions, then we can find a subset on which we have uniform convergence. In particular, if $0 < \delta < 1$ then the functions f_k converge uniformly to 0 on the interval $[\delta,1]$. Egoroff's Theorem essentially states that this example is typical, as long as we are dealing with a finite measure space. So it is important in the example above that the region of interest (the interval [0,1]) has finite measure, but according to Egoroff, whenever we have pointwise a.e. convergence of a sequence of functions in a finite measure space, the sequence will actually converge uniformly on a "large" part of the domain.

Theorem 3.68 (Egoroff's Theorem). Let (X, Σ, μ) be a finite measure space. If f_k , $f: X \to \mathbb{C}$ are measurable functions such that $f_k \to f$ pointwise a.e., then for every $\varepsilon > 0$ there exists a measurable set $E \subseteq X$ such that

^{© 2011} by Christopher Heil

- (a) $\mu(E) < \varepsilon$, and
- (b) f_k converges uniformly to f on $E^{\mathbb{C}}$, i.e.,

$$\lim_{k \to \infty} \left(\sup_{x \notin E} |f(x) - f_k(x)| \right) = 0.$$

Proof. Let Z be the set of measure zero consisting of all points $x \in X$ such that $f_k(x)$ does not converge to f(x). For each $k, n \in \mathbb{N}$, define the measurable sets

$$E_k(n) = \bigcup_{m=k}^{\infty} \left\{ |f - f_m| \ge \frac{1}{n} \right\}$$
 and $Z_n = \bigcap_{k=1}^{\infty} E_k(n)$.

Fix n, and suppose that $x \in Z_n$. Then $x \in E_k(n)$ for every k, so for each k there must exist some integer $m \ge k$ such that $|f(x) - f_m(x)| > \frac{1}{n}$. Therefore $f_k(x)$ does not converge to f(x) as k increases, so this point x belongs to Z. This shows that

$$Z_n \subset Z$$
.

and therefore $\mu(Z_n) = 0$ by monotonicity. With n fixed, the sets $E_k(n)$ are nested decreasing, and their intersection is Z_n by definition. Therefore, it follows from continuity from above that

$$\forall n \in \mathbb{N}, \quad \lim_{k \to \infty} \mu(E_k(n)) = \mu(Z_n) = 0. \tag{3.13}$$

Fix $\varepsilon > 0$. Applying equation (3.13), for each integer n there is some integer $k_n > 0$ such that

$$\mu(E_{k_n}(k)) < \frac{\varepsilon}{2^n}.$$

Define

$$E = \bigcup_{n=1}^{\infty} E_{k_n}(n).$$

Subadditivity implies that $\mu(E) \leq \varepsilon$. Further, if $x \notin E$ then $x \notin E_{k_n}(k)$ for any n, so $|f(x) - f_m(x)| < \frac{1}{n}$ for all $m \geq k_n$.

In summary, $\mu(E) \leq \varepsilon$ and for each $n \in \mathbb{N}$ there exists an integer $k_n > 0$ such that

$$m \ge k_n \implies \sup_{x \notin E} |f(x) - f_m(x)| \le \frac{1}{n}.$$

This says that f_k converges uniformly to f on $E^{\mathbb{C}}$. \square

Additional Problems

3.23. Let (X, Σ, μ) be a finite measure space, and let f_k , $f: X \to \mathbb{R}$ be measurable function on X. Show that if $f_k \to f$ pointwise a.e., then $f_k \stackrel{\text{m}}{\to} f$.

- **3.24.** Let D be a Lebesgue measurable subset of \mathbb{R}^d such that $|D| < \infty$. Show that if f_k , $f \colon D \to \mathbb{C}$ are measurable and $f_k \to f$ a.e. on D, then there exists a closed set $F \subseteq D$ such that $|D \setminus F| < \varepsilon$ and $f_k \to f$ uniformly on F.
- **3.25.** Suppose that μ is a σ -finite measure on X, and f_k , $f\colon X\to\mathbb{C}$ are measurable functions such that $f_k\to f$ a.e. Show that there exist measurable sets $E_n\subseteq E$ such that
 - (a) $\mu(X \setminus \bigcup E_n) = 0$, and
 - (b) $f_k \to f$ uniformly on each set E_n .