
3.8 Three Types of Convergence 93

3.8 Three Types of Convergence

Suppose that we are given a sequence functions {fk}k∈N on a set X and an-
other function f on X. What does it mean for fk to converge to f? Loosely
speaking, convergence means that fk becomes “closer and closer” to f as k
increases. However, there are many ways to say exactly what we mean by
“close.” Two familiar ways to quantify convergence are pointwise convergence
and uniform convergence. These types of convergence were discussed in Sec-
tions 0.1 and 0.2, respectively. In this section we will give an “almost every-
where” version of pointwise and uniform convergence, and then introduce a
new notion that we call “convergence in measure.” Each of these types of
convergence (and others that we will encounter later!) have their own impor-
tant role to play in analysis. We need all of these different notions in different
circumstances; which one to use will depend on the application that we have
at hand.

3.8.1 Pointwise Almost Everywhere Convergence

Let {fk}k∈N be a sequence of functions on a set X, either complex-valued
or extended real-valued. Recalling Definition 0.5, we say that fk converges
pointwise to a function f if for each individual element x ∈ X, the scalar
fk(x) converges to f(x) as k → ∞. We often write fk → f pointwise to
denote pointwise convergence.

We do not need to have a measure on a domain X in order to discuss
pointwise convergence on X. However, if we do have a measure then it is
often the case that sets of measure zero are simply not important when con-
sidering convergence. Therefore, a useful variation on pointwise convergence
is pointwise almost everywhere convergence, which is pointwise convergence
with the exception of a set of points whose measure is zero. For example,
this is the type of convergence that is used in the statement of part (b) of
Corollary 3.48. Here is a precise definition.

Definition 3.49 (Pointwise Almost Everywhere Convergence). Let
(X, Σ, µ) be a measure space, and let fk, f be measurable functions on E
that are either extended real-valued or complex-valued. We say that fk con-
verges pointwise almost everywhere to f if there exists a measurable set Z ⊆ X
such that µ(Z) = 0 and

∀x ∈ X\Z, lim
k→∞

fk(x) = f(x).

We often denote pointwise almost everywhere convergence by writing fk → f
pointwise µ-a.e. or simply fk → f µ-a.e. (and we may also omit writing the
symbol µ if it is understood). ♦
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Often, the functions fk not only converge pointwise a.e. to f, but are also
monotone increasing except on a set of measure zero, i.e.,

f1(x) ≤ f2(x) ≤ · · · for a.e. x.

In this case we say that that fk increases pointwise a.e. to f, and denote this
by writing fk ր f µ-a.e., or just fk ր f a.e. A similar definition is made for
decreasing sequences.

Remark 3.50. Note that if µ is a complete measure, then Corollary 3.48 implies
that measurability of the limit function f in Definition 3.49 follows automat-
ically from the measurability of the functions fk. ♦

Example 3.51. The functions χ
(0, 1

k
) converge pointwise to the zero function as

k → ∞. On the other hand, the functions χ
[0, 1

k
] do converge pointwise to the

zero function, for if x = 0 then the limit is 1, not zero. However, the singleton
{0} has Lebesgue measure zero, so χ

[0, 1
k
] ց 0 a.e. ♦

3.8.2 L
∞ Convergence

Uniform convergence is a stronger requirement than pointwise convergence
in that it requires a “simultaneity” of convergence over all of the domain
rather just “individual” convergence at each x. As discussed in Section 0.2, a
convenient way to view uniform convergence is in terms of the uniform norm

‖f‖u = sup
x∈X

|f(x)|. (3.7)

Uniform convergence requires that the distance between fk and f, as measured
by the uniform norm, shrinks to zero as k increases. That is,

fk → f uniformly ⇐⇒ lim
k→∞

‖f − fk‖u = 0.

We can define uniform convergence without needing to have a measure
on our domain X. However, if we do have a measure on X then sets with
measure zero often “don’t matter.” In keeping with this philosophy, we modify
the definition of uniform convergence by simply replacing the supremum that
appears in equation (3.7) with an essential supremum. We introduced the
essential supremum for functions on Rd in Definition 1.47, and the following
definition extends this to functions on an arbitrary measure space.

Definition 3.52 (Essential Supremum). Let (X, Σ, µ) be a measure space.

The essential supremum of a measurable function f : X → R is

ess sup
x∈X

f(x) = inf
{
M : f(x) ≤ M µ-a.e.

}
. ♦ (3.8)
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We give the following name to the essential supremum of |f |. This name
may not seem very inspired at this point, but it will fit naturally for the
terminology for the Lp spaces that we will introduce in Chapter 5.

Definition 3.53 (L∞ norm). Let (X, Σ, µ) be a measure space, and let f be
an measurable function on X, either extended real-valued or complex-valued.
The L∞ norm of f is the essential supremum of |f |, and it is denoted by

‖f‖∞ = ess sup
x∈X

|f(x)|. ♦

Problem 1.27, which was stated specifically for Lebesgue measure, gener-
alizes to abstract measures without change. Consequently, we have

|f(x)| ≤ ‖f‖∞ for a.e. x ∈ X.

Further, by the definition of supremum we have the inequality

‖f‖∞ ≤ ‖f‖u.

However, the uniform norm and the L∞ norm of f need not be equal. For
example, if we take X = R and define f(x) = 0 for x 6= 0 and f(0) = 1 then
we have ‖f‖∞ = 0 while ‖f‖u = 1. On the other hand, Problem 1.29 showed
that if f is a continuous function on Rd then ‖f‖∞ = ‖f‖u. Hence in some
ways we can regard the L∞ norm as being a generalization of the uniform
norm.

We introduce some additional terminology associated with the essential
supremum and the L∞ norm.

Definition 3.54 (Essentially Bounded Function). Let (X, Σ, µ) be a
measure space, and let f, fk, g be measurable functions on X, either extended
real-valued or complex-valued.

(a) We say that f is essentially bounded if ‖f‖∞ < ∞.

(b) The quantity ‖f − g‖u is called the L∞ distance between f and g.

(c) We say that fk converges to f in L∞ norm if

lim
k→∞

‖f − fk‖∞ = 0. ♦

The next exercise shows that the L∞ norm almost satisfies the properties
given in Definition 0.1 that are necessary in order for ‖ · ‖∞ to be called a
norm. However, there is a subtle difference between statement (b) in the next
exercise and the uniqueness property of a norm given in Definition 0.1. We
will discuss this difference in more detail after the exercise. To avoid technical
complications, we will assume that our measure space is complete and scalars
are complex in this exercise.
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Exercise 3.55. Let (X, Σ, µ) be a measure space, and let Eb(X) be the set of
all measurable, essentially bounded, complex-valued functions on X, i.e.,

Eb(X) =
{
f : X → C : f is measurable and essentially bounded

}
.

It follows from Exercise 3.45 that Eb(X) is a vector space over the complex
field. Show that uniform norm satisfies the following properties on Eb(X):

(a) 0 ≤ ‖f‖∞ ≤ ∞ for all f ∈ Eb(X),

(b) ‖f‖∞ = 0 if and only if f = 0 a.e.,

(c) ‖cf‖∞ = |c| ‖f‖∞ for all f ∈ Eb(X) and scalars c ∈ C,

(d) ‖f + g‖∞ ≤ ‖f‖∞ + ‖g‖∞ for all f, g ∈ Eb(X). ♦

Unfortunately, statement (b) in Exercise 3.55 is not quite what we need in
order to say that ‖ ·‖∞ is a norm on Eb(X). According to Definition 0.1, to be
a norm it must be the case that ‖f‖∞ = 0 if and only if f is the zero vector in
Eb(X). The zero vector in Eb(X) is the zero function, the function that takes
the value 0 for every x ∈ X. However, it is not usually true that ‖f‖∞ = 0 if
and only if f is the zero function. Instead we only have the weaker statement
that

‖f‖∞ = 0 ⇐⇒ f = 0 a.e. (3.9)

The technical terminology for this is that ‖ · ‖∞ is a seminorm on Eb(X)
rather than a norm. Since our philosophy is that sets of measure zero usually
“don’t matter,” this is not really a problem—we simply accept the fact that
the right-hand side of equation (3.9) says that f is zero almost everywhere,
instead of saying that f is zero everywhere. Problem 3.21 shows one way to
modify the space on which ‖ · ‖∞ is defined so that it becomes a true norm on
that space. This approach will be useful to us when we define the Lp spaces
in Chapter 5, but right now it is not important.

Example 3.56. Consider X = R and f = χC , the characteristic function of
the Cantor set C. Since the Cantor zero has measure zero, its characteristic
function satisfies χC = 0 a.e. Therefore ‖χC‖∞ = 0, even though χC is not
the zero function. ♦

Whenever we have a norm (or a seminorm), it is very important to know
whether Cauchy sequences must converge with respect to that norm. Follow-
ing the usual terminology for norms (Definition 0.2), we say that a sequence
{fk}k∈∞ in Eb(X) is Cauchy in L∞ norm or Cauchy with respect to ‖ · ‖∞ if

∀ ε > 0, ∃N > 0, ∀ j, k ≥ N, ‖fj − fk‖∞ < ε.

We will show in the next theorem that every Cauchy sequence in Eb(X) must
converge in Eb(X), at least if our measure µ is a complete measure on X. If
‖ · ‖∞ was a true norm on Eb(X) then we would describe this by saying that
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Eb(X) is a complete normed space (see Definition 0.3). However, since ‖·‖∞ is
not a true norm, we will not use that terminology in connection with Eb(X).

Theorem 3.57. Let (X, Σ, µ) be a complete measure space. If {fk}k∈N is a
sequence in Eb(X) that is Cauchy with respect to ‖ · ‖∞, then there exists a
function f ∈ Eb(X) such that ‖f − fk‖∞ → 0 as k → ∞.

Proof. Let {fk}k∈N be a Cauchy sequence in Eb(X). This means that

∀ ε > 0, ∃N > 0, ∀ j, k ≥ N, ‖fj − fk‖∞ < ε.

Let Mjk = ‖fj − fk‖∞. Then |fj(x)− fk(x)| can exceed Mjk only for a set of
x’s that lie in a set of measure zero. That is, if we define

Zjk =
{
|fj − fk| > Mjk

}
,

then µ(Zjk) = 0. Since a countable union of zero measure sets has measure
zero, it follows that

Z =
⋃

j,k∈N

Zjk

has measure zero. For each k ∈ N, create a function gk that equals fk almost
everywhere but is zero on the set Z:

gk(x) =

{
fk(x), x /∈ Z,

0, x ∈ Z.

Since µ is a complete measure, Lemma 3.27 implies that gk is a measurable
function. Exercise: Show that the uniform norm of gj − gk coincides with its
L∞ norm, which also coincides with the L∞ norm of fj − gk, i.e.,

‖gj − gk‖u = ‖gj − gk‖∞ = ‖fj − fk‖∞.

Consequently, {gk}k∈N is a uniformly Cauchy in Fb(X), the space of bounded,
complex-valued functions on X. Theorem 0.12 therefore implies that there is a
bounded function g such that gk → g uniformly. This function g is measurable
since it is the pointwise limit of measurable functions. Hence g belongs to
Eb(X). Finally, since g − gk differs from g − fk only on a set of measure zero,
we have

‖g − fk‖∞ = ‖g − gk‖∞ ≤ ‖g − gk‖u → 0 as k → ∞. ♦

Example 3.58. Let Z1 ⊆ Z2 ⊆ · · · be a nested increasing sequence of subsets
of R that each have measure zero. Define

Note the two distinct uses of the word “complete” in this paragraph! A complete

measure is a measure such that every subset of a null set is measurable, while a

complete normed space is a space such that every Cauchy sequence converges.
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fk(x) =

{
1
k
, x /∈ Zk,

k, x ∈ Zk.

The functions fk do not converge pointwise to zero since there points x where
fk(x) → ∞ as k increases. On the other hand, fk converges to the zero function
with respect to ‖ · ‖∞, because

‖0 − fk‖∞ = ‖fk‖∞ =
1

k
as k → ∞. ♦

If we like, we could make analogous versions of Exercise 3.55 and Theorem
3.57 for extended real-valued functions that are finite almost everywhere.

3.8.3 Convergence in Measure

Pointwise convergence, pointwise almost everywhere convergence, uniform
convergence, and L∞ norm convergence are only some of the myriad ways
in which we might say that functions fk “converge” to a given function f. For
pointwise convergence we require that fk(x) becomes close to f(x) for each
individual x, while for uniform convergence we require that fk(x) and f(x)
become simultaneously close over all x. Pointwise almost everywhere and L∞

norm convergence are variations where we ignore sets of measure zero. Now we
describe another type of convergence criterion that we will call convergence
in measure.

Suppose that we have functions fk and f on a measure space (X, Σ, µ).
The idea of convergence in measure is that we require fk(x) and f(x) to be
close except on a set that has smaller and smaller measure. More precisely,
given any fixed ε > 0, the set where fk(x) and f(x) differ by more than ε
should become smaller and smaller in measure as k increases. Here is the
explicit definition for complex-valued functions.

Definition 3.59 (Convergence in Measure). Let (X, Σ, µ) be a measure
space, and let fk, f be complex-valued measurable functions on E. Then we

say that fk converges in measure to f , and write fk
m
→ f, if

∀ ε > 0, lim
k→∞

µ
{
|f − fk| > ε

}
= 0. ♦ (3.10)

It is useful to write out equation (3.10) in complete detail. With all the
quantifiers, the requirement for convergence in measure given in (3.10) is that

∀ ε, η > 0, ∃N > 0 such that k > N =⇒ µ{|f − fk| ≥ ε} < η. (3.11)

Problem 3.19 gives an equivalent formulation that requires only the use of a
single variable ε instead of two variables ε, η.

We can make a similar definition for convergence in measure of extended
real-valued functions, but there is a technical complication because f − fk

might not be measurable. However, if our measure space is complete and the
functions fk and f are finite a.e. then this is not a problem, so we extend the
definition to this case as follows.
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Definition 3.60 (Convergence in Measure). Let (X, Σ, µ) be a complete
measure space, and let fk, f be extended real-valued measurable functions
on E that are finite a.e. Then we say that fk converges in measure to f , and

write fk
m
→ f, if

∀ ε > 0, lim
k→∞

µ
{
|f − fk| > ε

}
= 0. ♦

For the remainder of this section we will state results for the case of
complex-valued functions, and assign the reader the task of formulating anal-
ogous results for extended real-valued functions.

Since {|f − fk| > ε} is the set where f and fk differ by more than ε, these
definitions are saying that the measure of this set must decrease to zero as k
increases. For example, if fk = f except on a set Ek of measure 1/k, then

fk
m
→ f. This example suggests that convergence in measure might imply point-

wise or pointwise almost everywhere convergence, but the following exercises
and examples show that the relationships among these types of convergence
are not quite as straightforward as we might hope.

Exercise 3.61. Show that L∞ norm convergence implies both pointwise a.e.
convergence and convergence in measure. That is, if (X, Σ, µ) is a measure

space and ‖f − fk‖∞ → 0, then fk → f pointwise a.e. and also fk
m
→ f. ♦

Example 3.62 (Shrinking Boxes). Let fk = χ
[0, 1

k
], the characteristic function

of the closed interval [0, 1
k
]. As we saw in Example 3.51, these functions con-

verge pointwise a.e. to the zero function. However, since ‖fk‖∞ = 1 for ev-

ery k, the functions fk do not converge in L∞ norm to the zero function.
Hence pointwise a.e. convergence does not imply L∞ norm convergence.

However, this sequence does converge in measure to the zero function. To
see this, fix any 0 < ε < 1. The set where fk differs from the zero function by

more than ε is precisely the interval [0, 1
k
]. The Lebesgue measure of this set

converges to zero as k increases, so fk
m
→ 0. ♦

A variation on the preceding example is to take gk = k·χ[0, 1
k
]. Even though

the heights of these functions grow without bound as k increases, we still have

that gk → 0 a.e. and gk
m
→ 0.

Example 3.63 (Boxes Marching to Infinity). This example will show that
pointwise a.e. convergence does not imply convergence in measure. Let fk =
χ[k,k+1], the characteristic function of the closed interval [k, k + 1]. Then we

have that fk → 0 pointwise, although we do not have L∞ convergence to the
zero function because ‖fk‖∞ = 1 for every k.

To see that we do not have convergence in measure, fix any 0 < ε < 1.
The set where fk differs from 0 by more than ε is the interval [k, k +1], which
has Lebesgue measure 1 for every k. Since this quantity does not shrink to
zero, fk does not converge in measure to the zero function. ♦
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Example 3.64 (Boxes Marching in Circles). This example will show that con-
vergence in measure does not imply pointwise a.e. convergence. Define

f1 = χ[0,1],

f2 = χ
[0, 1

2
], f3 = χ

[ 1
2
,1],

f4 = χ
[0, 1

3
], f5 = χ

[ 1
3
, 2
3
], f6 = χ

[ 2
3
,1],

f7 = χ
[0, 1

4
], f8 = χ

[ 1
4
, 1
2
], f9 = χ

[ 1
2
, 3
4
], f10 = χ

[ 3
4
,1],

and so forth. Picturing the graphs of these functions as boxes, the boxes march
from left to right across the interval [0, 1], then shrink in size and march across
the interval again, and do this over and over.

Fix any 0 < ε < 1. For the indices k = 1, . . . , 10, the Lebesgue measure of
{|fk| > ε} is

1,
1

2
,

1

2
,

1

3
,

1

3
,

1

3
,

1

4
,

1

4
,

1

4
,

1

4
.

The Lebesgue measure of {|fk| > ε} converges to zero as k increases, so fk
m
→ 0.

We do not have pointwise a.e. convergence in this example because no
matter what point x ∈ [0, 1] that we choose, there are infinitely many different
values of k such that fk(x) = 0 and infinitely many k such that fk(x) = 1.
While fk(x) may be zero for many particular k, there are always larger k such
that fk(x) = 1. Hence fk(x) does not converge to 0 for any x ∈ [0, 1]. This
sequence of functions does not converge pointwise (or even pointwise a.e.) to
the zero function, or to any other function. ♦

In summary, convergence in L∞ norm implies pointwise a.e. convergence
and convergence in measure, but pointwise a.e. convergence does not imply
convergence in measure, and convergence in measure does not imply pointwise
a.e. convergence. Just to complicate matters, after we prove Egoroff’s Theo-
rem (Theorem 3.68) we will be able to show that, in a finite measure space,
pointwise a.e. convergence implies convergence in measure (see Problem 3.23).

In the converse direction, Example 3.64 shows us that convergence in mea-
sure does not imply pointwise a.e. convergence, even in a finite measure space.
However, there is a weaker but still very important relation between con-
vergence in measure and pointwise a.e. convergence. Specifically, the next
theorem will show that if fk converges in measure to f, then there is a subse-
quence of the fk that converges pointwise almost everywhere to f. For exam-

ple, {χ[0, 1
k
]}k∈N is a subsequence of the Marching Boxes from Example 3.64,

and χ
[0, 1

k
] converges pointwise a.e. to the zero function.

Theorem 3.65. Let (X, Σ, µ) be a measure space. If fk, f : X → C are mea-

surable functions such that fk
m
→ f, then there exists a subsequence {fnk

}k∈N

such that fnk
→ f pointwise a.e.
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Proof. Assume fk
m
→ f. Exercise: Show that there exist indices n1 < n2 < · · ·

such that
µ
{
|f − fnk

| > 1
k

}
≤ 2−k, k ∈ N.

Define

Ek =
{
|f − fnk

| > 1
k

}
and Hm =

∞⋃
k=m

Ek.

These sets are measurable since fk and f are measurable functions. By con-
struction we have µ(Ek) ≤ 2−k, so by subadditivity,

µ(Hm) ≤

∞∑

k=m

µ(Ek) ≤

∞∑

k=m

1

2k
= 2−m+1.

Set

Z =
∞⋂

m=1
Hm.

For each m ∈ N we have µ(Z) ≤ µ(Hm) ≤ 2−m+1, so Z has measure zero
(note that Z = lim supEk in the terminology of Problem 2.18).

If x /∈ Z, then x /∈ Hm for some m. Hence x /∈ Ek for all k ≥ m, which
implies that

|f(x) − fnk
(x)| ≤

1

k
for all k ≥ m.

Thus fnk
(x) → f(x) when x /∈ Z. Since Z has measure zero, this says that

the functions fnk
converge pointwise almost everywhere to f. ⊓⊔

Unlike L∞ convergence, it is not possible to characterize convergence in
measure in terms of a norm. Problem 3.22 shows that it is possible to create a
metric that corresponds to convergence in measure, but in practice it is usually
more convenient work directly with the definition of convergence in measure
instead of trying to use that metric. On the other hand, it is important to
know whether there is a notion of sequences that are Cauchy with respect to
convergence in measure, and whether such Cauchy sequences must converge
in measure. The next definition introduces the Cauchy criterion.

Definition 3.66 (Cauchy in Measure). Let (X, Σ, µ) be a measure space.
Given measurable functions fk, f : X → C, we say that {fk}k∈N is Cauchy in
measure if

∀ ε > 0, lim
j,k→∞

µ{|fj − fk| > ε} = 0. (3.12)

Precisely, equation (3.12) means that

∀ ε, η > 0, ∃N > 0 such that j, k > N =⇒ µ{|fj − fk| > ε} < η. ♦

Now we prove that if a sequence is Cauchy in measure then it must con-
verge in measure. The usefulness of the Cauchy criterion is that we can test
for it without knowing what the limit function is, or even whether it exists.
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Theorem 3.67 (Cauchy Criterion for Convergence in Measure). Let
(X, Σ, µ) be a measure space. If fk : X → C are measurable functions on X,
then the following statements are equivalent.

(a) There exists a measurable function f such that fk
m
→ f.

(b) {fk}k∈N is Cauchy in measure.

Proof. (a) ⇒ (b). Assume that fk
m
→ f, and fix ε, η > 0. Then by equation 3.11,

there exists an N > 0 such that

µ{|f − fk| > ε} < η for all k > N.

By the Triangle Inequality,

|fj(x) − fk(x)| ≤ |fj(x) − f(x)| + |f(x) − fk(x)|.

It follows from this that

{|fj − fk| > 2ε} ⊆ {|fj − f | > ε} ∪ {|f − fk| > ε}.

Consequently, if k > N then

µ{|fj − fk| > 2ε} ≤ µ{|fj − f | > ε} + µ{|f − fk| > ε} < η + η = 2η.

Therefore {fk}k∈N is Cauchy in measure.

(b) ⇒ (a). The first part of this proof proceeds much like the proof of
Theorem 3.65. Suppose that {fk}k∈N is Cauchy in measure. Then there exist
indices n1 < n2 < · · · such that

µ
{
|fnk+1

− fnk
| > 2−k

}
≤ 2−k, k ∈ N.

For simplicity of notation, let gk = fnk
. Define

Ek =
{
|gk+1 − gk| > 2−k

}
and Hm =

∞⋃
k=m

Ek.

Then µ(Ek) ≤ 2−k, so

µ(Hm) ≤

∞∑

k=m

µ(Ek) ≤

∞∑

k=m

2−k = 2−m+1.

Therefore, if we set

Z =
∞⋂

m=1
Hm =

∞⋂
m=1

∞⋃
k=m

Ek = lim supEk,

then Z is measurable and µ(Z) = 0.
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If x /∈ Z then x /∈ Hm for some m, and therefore x /∈ Ek for all k ≥ m.
That is, |gk+1(x)−gk(x)| ≤ 2−k for all k ≥ m. This implies that {gk(x)}k∈N is
a Cauchy sequence of complex scalars (compare Problem 0.3), and therefore
must converge. The function

f(x) =

{
lim

k→∞

gk(x), if the limit exists,

0, otherwise,

is measurable by Corollary 3.48, and we have by construction that gk → f
pointwise a.e.

Now will show that gk converges in measure to f. Fix ε > 0, and choose
m large enough that 2−m ≤ ε. Fix m ∈ N, and suppose that x /∈ Hm. If
n > k > m then we have

|gn(x) − gk(x)| ≤

n−1∑

i=k

|gi+1(x) − gi(x)| ≤

n−1∑

i=k

2−i ≤ 2−k+1 ≤ 2−m ≤ ε.

Taking the limit as n → ∞, this implies that |f(x)−gk(x)| ≤ ε for all x /∈ Hm

and k > m. Hence

{
|f − gk| > ε

}
⊆ Hm, k > m,

so
lim sup

k→∞

µ
{
|f − gk| > ε

}
≤ µ(Hm) ≤ 2−m+1.

This is true for every m, so we conclude that limk→∞ µ{|f − gk| > ε} = 0.

Therefore gk
m
→ f. This is not quite enough to complete the proof, becuase

{gk}k∈N is only a subsequence of {fk}k∈N. However, by Problem 3.18, the fact
that {fk}k∈N is Cauchy in measure and has a subsequence that converges in

measure to f implies that fk
m
→ f. ⊓⊔

Additional Problems

3.18. Let (X, Σ, µ) be a measure space, and let fk, f : X → C be measurable
functions on X. Show that if {fk}k∈N is Cauchy in measure and there exists

a subsequence such that fnk

m
→ f, then fk

m
→ f.

3.19. Let (X, Σ, µ) be a measure space, and let fk, f : X → C be measurable

functions on X. Prove that fk
m
→ f if and only if

∀ ε > 0, ∃N > 0 such that k > N =⇒ µ{|f − fk| ≥ ε} < ε.

Formulate and prove an analogous Cauchy criterion.
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3.20. Let (X, Σ, µ) be a measure space. Let fk, f, gk, g : X → C be measurable
functions on X, and prove the following statements.

(a) If fk
m
→ f and fk

m
→ g, then f = g a.e.

(b) If fk
m
→ f and gk

m
→ g, then fk + gk

m
→ f + g.

(c) If µ is a bounded measure, fk
m
→ f, and gk

m
→ g, then fk gk

m
→ fg.

(d) The conclusion of part (c) can fail if µ is not bounded.

3.21. Let (X, Σ, µ) be a measure space.

(a) Show that f ∼ g if f = g a.e. is an equivalence relation on Eb(X).

(b) Let f̃ denote the equivalence class of f under this relation, i.e.,

f̃ =
{
g ∈ Eb(X) : g = f a.e.

}
.

Define |||f̃ |||
∞

= ‖f‖∞, and show that this quantity is independent of the

choice of representative f of f̃ .

(c) Let the quotient space L∞(X) consist of all the distinct equivalence
classes of f ∈ Eb(X), i.e.,

L∞(X) =
{
f̃ : f ∈ Eb(X)

}
.

Define operations of addition and scalar multiplication that make L∞(X) into
a vector space over the complex field. What is the zero element of L∞(X)?

(d) Show that ||| · |||
∞

is a norm on L∞(X).

3.22. Let (X, Σ, µ) be a measure space, and let Fm(X) be the vector space of
all complex-valued measurable functions on X. For each n ∈ N, define

ρn(f) = µ
{
|f | > 1

n

}

and for f, g ∈ Fm(X) define

d(f, g) =

∞∑

n=1

2−n ρn(f − g)

1 + ρn(f − g)
.

Prove that ρn(f + g) ≤ ρ2n(f) + ρ2n(g), and use this to prove the following
statements.

(a) d(f, g) ≥ 0,

(b) d(f, g) = 0 if and only if f = g,

(c) d(f, g) = d(g, f), and

(d) d(f, h) ≤ d(f, g) + d(g, h).

Consequently, if we identify functions that are equal almost everywhere then d
is a metric on Fm(x). Prove that convergence with respect to this metric
coincides with convergence in measure, i.e.,

fk
m
→ f ⇐⇒ lim

k→∞

d(f, fk) = 0.


