
48 2 Abstract Measure Theory

2.3 Basic Properties of Measures

This section presents some properties of abstract measures that are analogous
to properties of Lebesgue measure that we encountered in Chapter 1. As most
of the proofs of these properties are almost identical to those for Lebesgue
measure, we state these results as exercises.

Exercise 2.16. Given a measure space (X, Σ, µ), prove the following state-
ments.

(a) Monotonicity: If A, B ∈ Σ and A ⊆ B then µ(A) ≤ µ(B).

(b) If A, B ∈ Σ, A ⊆ B, and µ(A) < ∞ then µ(B\A) = µ(B) − µ(A). ♦

Remark 2.17. In Chapter 6 we will study signed measures, which satisfy
countable additivity but allow the measure to take values in the range
−∞ ≤ µ(E) ≤ ∞. An important difference between measures and signed

measures is that monotonicity need not hold for signed measures! If µ is a
signed measure and A ⊆ B then, since µ(A) might be negative, we cannot
infer from µ(A) + µ(B\A) = µ(B) that µ(A) ≤ µ(B). ♦

Since measures are monotonic, we immediately obtain the following corol-
lary of Exercise 2.16.

Corollary 2.18. Let (X, Σ, µ) be a measure space, and suppose that E ∈ Σ
satisfies µ(E) = 0. If A ⊆ E and A ∈ Σ, then µ(A) = 0. ⊓⊔

Thus, all measurable subsets of a zero measure set have zero measure.
In general, however, a set with zero measure may contain subsets that are
not measurable. We give the following special name to measures that have
the property that every subset of a measurable set with zero measure are
measurable.

Definition 2.19 (Complete Measure). Let (X, Σ, µ) be a measure space.
we say that µ is complete if

E ∈ Σ, µ(E) = 0 =⇒ A ∈ Σ for all A ⊆ E. ♦

The reader should be aware that the terms “complete” and “algebra” are
heavily overused in mathematics and appear in many unrelated definitions
and contexts.

Example 2.20. If Z is a Lebesgue measurable subset of R
d that has measure

zero, then every subset of Z is Lebesgue measurable (Lemma 1.21). Thus
Lebesgue measure is complete, although we should emphasize that we are (as
usual) implicitly taking the σ-algebra to be LRd .
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If we change the σ-algebra, then Lebesgue measure restricted to this new
σ-algebra may not be complete. For example, consider Lebesgue measure re-
stricted to the Borel σ-algebra BRd . If Z ∈ BRd is a Borel set and |Z| = 0,

then it is possible that Z may contain a subset A that is not a Borel set. This
set A is not measurable with respect to BRd , so Lebesgue measure is not a
complete measure on (Rd,BRd). ♦

We will consider completeness of measures in more detail in Section 2.4.
For now, we give a name to those sets E that have zero measure.

Notation 2.21 (Null Sets). Given a measure space (X, Σ, µ), a set E ∈ Σ
such that µ(E) = 0 is called a µ-null set or a set of µ-measure zero.

A property that holds for all x ∈ X except possibly for x in a µ-null set E

is said to hold µ-almost everywhere (abbreviated µ-a.e.). ♦

We often omit writing the symbol µ if it is clear from context, e.g., we
may simply say that E is a null set instead writing µ-null set, or say that a
property holds almost everywhere instead of µ-almost everywhere.

Remark 2.22. Null sets can be “very large” in senses other than their measure.
For example, for the δ-measure on R

d we have δ(Rd\{0}) = 0. Thus R
d\{0}

is a δ-null set, and consequently χ
Rd\{0} = 0 δ-a.e.

Abstract measures satisfy continuity from above and below in the following
sense.

Exercise 2.23. Let (X, Σ, µ) be a measure space. Given measurable sets
E1, E2, . . . in X, prove that the following statements hold.

(a) Continuity from below: If E1 ⊆ E2 ⊆ · · · , then

µ

(

∞
⋃

k=1

Ek

)

= lim
k→∞

µ(Ek).

(b) Continuity from above: If E1 ⊇ E2 ⊇ · · · and µ(Ek) < ∞ for some k,

then

µ

(

∞
⋂

k=1

Ek

)

= lim
k→∞

µ(Ek). ♦

The final property that we will discuss in this section is countable subaddi-
tivity. Here we require a different approach that what was used for Lebesgue
measure. When we constructed Lebesgue measure, we first constructed ex-
terior Lebesgue measure, which is subadditive, and then restricted to the
Lebesgue measurable sets to obtain Lebesgue measure. Hence Lebesgue mea-
sure simply inherits subadditivity from exterior Lebesgue measure, and the
difficulty with Lebesgue measure is proving that countable additivity holds on
the Lebesgue measurable sets. In contrast, an abstract measure µ is countably
additive by definition, and we must deduce countable subadditivity from that
hypothesis.



50 2 Abstract Measure Theory

Theorem 2.24 (Countable Subadditivity). Let (X, Σ, µ) be a measure

space. If E1, E2, . . . ∈ Σ, then

µ

(

⋃

k

Ek

)

≤
∑

k

µ(Ek).

Proof. Using the disjointization trick (Exercise 2.7), we can write ∪Ek = ∪Fk

where the sets Fk are measurable and disjoint, and Fk ⊆ Ek for each k.

Combining countable additivity and monotonicity, it follows that

µ

(

⋃

k

Ek

)

= µ

(

⋃

k

Fk

)

=
∑

k

µ(Fk) ≤
∑

k

µ(Ek). ⊓⊔

Additional Problems

2.16. Show that every σ-finite measure is semifinite.

2.17. Suppose that (X, Σ, µ) is a measure space and {x} ∈ Σ for every x ∈ X.

Show that if µ is a finite measure, then E = {x ∈ X : µ{x} > 0} is countable.

2.18. Let (X, Σ, µ) be a measure space and fix Ek ∈ Σ for k ∈ N. Define

lim sup Ek =
∞
⋂

j=1

(

∞
⋃

k=j

Ek

)

, lim inf Ek =
∞
⋃

j=1

(

∞
⋂

k=j

Ek

)

.

Show that
µ
(

lim inf Ek

)

≤ lim inf µ(Ek).

Also show that if µ(∪Ek) < ∞, then

µ
(

lim sup Ek

)

≥ lim sup µ(Ek).

2.19. Let (X, Σ, µ) be a measure space. Show that if µ is semifinite, E ∈ Σ,

and µ(E) = ∞, then for any C > 0 there exists some measurable set A ⊆ E

that satisfies C < µ(A) < ∞.

2.20. Suppose that µ is a finitely additive function on a σ-algebra Σ of subsets
of X, i.e., µ(∅) = 0 and µ

(

Sn
k=1

Ek

)

=
∑n

k=1
µ(Ek) for any finite collection of

disjoint sets E1, . . . , En ∈ Σ. Prove the following statements.

(a) µ is a measure if and only if it satisfies continuity from below.

(b) If µ(X) < ∞, then µ is a measure if and only if it satisfies continuity
from above.


