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Lebesgue Measure

There are two glasses of water on my desk. The little glass contains v1 units of
water and the big glass has v2 units. I pour the two glasses into a single larger
glass, which now contains v1 + v2 units of water. Volume of incompressible
fluids appears to be additive. It seems obvious that I should be able to put
this on a precise mathematical footing and find a function | · | that assigns to
every set E ⊆ Rd a “volume” or “measure” |E| in such that way that:

(a) 0 ≤ |E| ≤ ∞,

(b) if E1, E2, . . . are finitely or countably many disjoint sets then

∣

∣

∣

⋃

n

En

∣

∣

∣
=

∑

n

|En|,

(c) |E + x| = |E| for all x ∈ Rd, and

(d) the unit cube [0, 1)d has unit measure, i.e.,
∣

∣[0, 1)d
∣

∣ = 1.

The Axiom of Choice implies that no such function exists! We will prove
this in Section 1.7. Fortunately, this turns out to be only a small stumbling
block. The Axiom of Choice implies that bizarre nonmeasurable sets exist,
but if we are careful we can solve this difficulty by working with the class
of well-behaved measurable sets. Instead of trying to measure everything, we
only try to measure the “good sets.” Moreover, the sets that we encounter in
practice are almost always “good sets.”

Here is the plan for this chapter.

(1) We start with a basic class of subsets of Rd that we know how we want
to measure. Among the simplest choices are balls and rectangular boxes,
and we choose to start with boxes (because they are simpler in certain
ways, e.g., we can tile Rd with boxes but not with balls). We declare that
the measure of a rectangular box is its volume.
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(2) Next, we find a way to extend the notion of volume of boxes to generic
subsets of Rd. For every set E ⊆ Rd we define a nonnegative, extended
real-value number |E|e, and we do this in a way that naturally extends
the notion of volume of boxes. This number |E|e is the exterior Lebesgue
measure of E. The good news is that every subset of Rd has a uniquely
defined exterior measure. The bad—and rather unsettling—news is that
requirement (b) above does not hold for exterior Lebesgue measure in
general. In fact, the Axiom of Choice implies that there exist disjoint sets
A, B ⊆ Rd such that |A ∪ B|e < |A|e + |B|e (see Example 1.50).

(3) Finally, we find a way to restrict our attention to a smaller class of sets
LRd , the Lebesgue measurable subsets of Rd, in such a way that | · |e
restricted to LRd satisfies requirements (a)–(d) above—not for all subsets
of of Rd but at least for the Lebesgue measurable subsets. This is Lebesgue
measure on Rd.

In summary, Lebesgue measure is the extension of volume from boxes
to a large class of subsets of Rd on which requirements (a)–(d) are satisfied.
However, while Lebesgue measure is the prototypical example of a measure on
Rd, it is not the only way to measure things. For example, in some applications
it may be more important to know where a set is than how much “volume” it
contains, and so we might define the “big sets” to be the ones that contain a
certain point. This idea leads to the δ-measure on Rd, defined on sets E ⊆ Rd

by δ(E) = 1 if E contains the origin and δ(E) = 0 otherwise. This turns out to
be a perfectly good “measure” on Rd, and there are many other measures on
Rd that appear naturally in other contexts. These measures need not satisfy
all of requirements (a)–(d) above—we may give up the idea of “volume” as the
ideal meaning of “measure,” and instead focus on other properties as being
central to the idea of measure. To be precise, here is the list of properties that
we require a function to satisfy in order to be called a measure on a set X.

Definition 1.1 (Measure). Let X be a set.

(a) A σ-algebra or σ-field on X is a nonempty collection Σ of subsets of X
such that:

• Σ is closed under countable unions:

E1, E2, . . . ∈ Σ =⇒
⋃

k

Ek ∈ Σ,

• Σ is closed under complements:

E ∈ Σ =⇒ EC = X\E ∈ Σ.

(b) A function µ : Σ → [0,∞] is a measure on X with respect to a σ-algebra Σ
if:

• µ(∅) = 0, and
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• µ is countably additive:

E1, E2, . . . ∈ Σ are disjoint =⇒ µ
(

⋃

k

Ek

)

=
∑

k

µ(Ek).

If µ is a measure on X with respect to a σ-algebra Σ, then we say that (X, Σ, µ)
is a measure space. ♦

In short, the σ-algebra Σ is the collection of “good subsets” of X that we
are allowed to measure, and the function µ tells us how to measure them. For
Lebesgue measure, the good sets will be the Lebesgue measurable subsets of
Rd, while other measures may employ different σ-algebras of good sets. Here in
Chapter 1 we will focus on the process of constructing Lebesgue measure. We
will create exterior Lebesgue measure and explore its properties, and then find
the σ-algebra of Lebesgue measurable sets. In Chapter 2 we turn to generic
measures on sets, and the later chapters then use the machinery of measure
theory to create and apply a theory of integration.

1.1 Exterior Lebesgue Measure

Lebesgue measure is predicated on the idea of extending the notion of volume
from “simple” sets to more complicated ones. We begin with a class of objects
that we know how to measure—the rectangular parallelepipeds in Rd whose
sides are parallel to the coordinate axes. For simplicity we refer to these as
“boxes.”

Definition 1.2. A box in Rd is a set of the form

Q = [a1, b1] × · · · × [ad, bd] =
d

∏

i=1

[ai, bi]. (1.1)

The volume of this box is

vol(Q) = (b1 − a1) · · · (bd − ad) =

d
∏

i=1

(bi − ai). ♦

Whenever we write “box” without qualification, we mean a closed rectan-
gular box of the type defined in equation (1.1). If d = 1 then boxes are closed
intervals and their volume is their length, while if d = 2 then boxes are closed
rectangles and their volume is their area.

In order to measure generic sets, we approximate them by things we know.
If we cover a set E by boxes then the sum of the volumes of those boxes should
exceed the “measure” of E, whatever that is. Some coverings will do a better
job of approximating E, but each covering will be a little “too big.” We define
the exterior Lebesgue measure of E to be the infimum of these sums of volumes
over all possible coverings of E by boxes.
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Notation 1.3. (a) As stated in the opening section on General Notation, we
often write {Qk} to denote a collection where k runs through some implicit
index set (usually countable).

(b) Given a set E ⊆ Rd, if {Qk} is a countable collection of boxes such
that E ⊆

S

Qk then we say that {Qk} is a countable cover of E by boxes. ♦

Definition 1.4. The exterior Lebesgue measure or outer Lebesgue measure of
a set E ⊆ Rd is

|E|e = inf

{

∑

k

vol(Qk)

}

,

where the infimum is taken over all finite or countably infinite collections of
boxes {Qk} such that E ⊆

S

Qk. ♦

Every subset E of Rd has a uniquely defined exterior measure that lies in
the range 0 ≤ |E|e ≤ ∞. For example, Problem 1.1 asks for a proof that

|∅|e = 0 and |Rd|e = ∞.

However, despite its name, “exterior Lebesgue measure” is not a measure in
the sense of Definition 1.1. In general, countable additivity fails for exterior
Lebesgue measure (we will prove this in Section 1.7).

The following are immediate, but very important, consequences of the
definition of exterior Lebesgue measure.

Exercise 1.5. Given E ⊆ Rd, prove the following statements.

(a) If {Qk} is any countable cover of E by boxes, then

|E|e ≤
∑

vol(Qk).

(b) Given ε > 0, there exists some countable cover of E by boxes Qk such
that

|E|e ≤
∑

k

vol(Qk) ≤ |E|e + ε.

Note that we might have |E|e = ∞ in the line above.

(c) A translation Q + h = {x+ h : x ∈ Q} of a box Q is another box with the
same volume. As a consequence, exterior Lebesgue measure is translation-
invariant :

|E + h|e = |E|e for all h ∈ Rd.

(d) By definition, if E is a bounded subset of Rd then it is contained in some
box Q. Therefore |E|e ≤ vol(Q) < ∞. On the other hand, there exist
unbounded sets that have positive but finite exterior measure. ♦
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Here are some examples of exterior measures of sets.

Example 1.6. Suppose that E = {xk} is a countable subset of Rd, and fix
ε > 0. For each k, choose a box Qk that contains the point xk and has
volume vol(Qk) < 2−kε. Then E ⊆

S

Qk, so |E|e ≤
∑

vol(Qk) ≤ ε. Since ε is
arbitrary, we conclude that |E|e = 0. Thus, every countable subset of Rd has
zero exterior Lebesgue measure.

In particular, the set of rationals Q is a countable subset of R, so |Q|e = 0.
Thus Q is a “very small” part of R in a measure-theoretic sense. This contrasts
with the fact that Q is dense in R and therefore is a “very large” part of R

in a topological sense. A set and its closure can have very different exterior
measures! ♦

Example 1.7. Consider the boundary of the unit square Q = [0, 1]2 in R2. The
boundary is a union of four line segments ℓ1, ℓ2, ℓ3, ℓ4. Each line segment is
an uncountable set, but (as a subset of R2) it has measure zero since we can
cover it with a single box that has arbitrarily small area. For example, for the
bottom line segment ℓ1 we can write

ℓ1 =
{

(x, 0) : 0 ≤ x ≤ 1
}

⊆ [0, 1]× [−ε, ε] = Qε,

so |ℓ1|e ≤ vol(Qε) = 2ε. Therefore the two-dimensional exterior Lebesgue
measure of the line segment ℓ1 is zero. Similarly, ∂Q can be covered by four
boxes with arbitrarily small volume, so |∂Q|e = 0, and an extension of this
argument shows that the boundary of every box in Rd has exterior mea-
sure zero. ♦

So, we have shown that the boundary of a box has exterior measure zero.
This raises an interesting question—is it true that the boundary of every
closed subset of Rd has measure zero? We will answer this question shortly,
but give it some thought before reading onward!

Now, a box in R is just an interval, so its boundary is the finite set consist-
ing of the two endpoints of the interval. However, if d ≥ 2 then the boundary
of a box is not merely an infinite set but is actually uncountable—yet even so
it has measure zero. Therefore, at least when d ≥ 2, there exist uncountable
subsets of Rd that have measure zero. It is not quite so obvious whether there
exist uncountable subsets of R that have zero exterior measure, but we will
construct one next.

Example 1.8 (The Cantor Set). Define

F0 = [0, 1],

F1 =
[

0, 1
3

]

∪
[

2
3 , 1

]

,

F2 =
[

0, 1
9

]

∪
[

2
9 , 1

3

]

∪
[

2
3 , 7

9

]

∪
[

8
9 , 1

]

,

...
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F0

F1

F2

F3

F4

Fig. 1.1. The Cantor set C is the intersection of the sets Fn over all n ∈ N.

(see Figure 1.1). For a given n, Fn is a closed set that consists of 2n inter-
vals, each with length 3−n. Therefore, since boxes in one dimension are just
closed intervals, the set Fn is covered by 2n boxes each with volume 3−n.
Exercise 1.5(a) therefore tells us that

0 ≤ |Fn|e ≤ 2n 3−n = (2/3)n.

(In fact, the exterior measure of Fn is precisely (2/3)n, but we have not
proved this fact yet and will not need to use it here.) We create the set Fn+1

by removing the middle third from each of the intervals that comprise Fn.
The classical “middle-thirds” Cantor set is C = ∩Fn The Cantor set is closed
because it is an intersection of closed sets. Moreover C ⊆ Fn, so C is covered
by the 2n intervals that comprise Fn. Applying Exercise 1.5(a), it follows that

0 ≤ |C|e ≤ (2/3)n.

This is true for every integer n ≥ 0, so the exterior Lebesgue measure of C
is precisely |C|e = 0. Even so, Problem 1.7 sketches a direct proof that the
Cantor set is uncountable. ♦

The Cantor set has many remarkable properties. For example, C contains
no interior points and equals its own boundary (Problem 1.7). Moreover, C is
a perfect set in the sense of the following definition.

Definition 1.9. Given S ⊆ Rd, let S′ be the set of all accumulation points
of S. We say that S is perfect if S is nonempty and S = S′. ♦

Problem 1.9 asks for a proof that every perfect set is uncountable. Al-
though we will not prove it, the Cantor–Bendixson Theorem is a fundamental
result that states that every nonempty closed set F ⊆ Rd can be uniquely
written as F = E ∪ Z where E is perfect and Z is countable.

Remark 1.10. Some variations on the construction of the Cantor set are given
in Problems 1.8 and 1.25. In particular, Problem 1.25 shows how to construct
a Cantor-like set P that has positive measure. This set P is closed and equals
its own boundary, so—despite our intuition that this should be impossible—
there exists a closed set whose boundary has positive exterior measure! ♦
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Now we explore some of the basic properties of exterior Lebesgue measure.

Lemma 1.11 (Monotonicity). If A ⊆ B ⊆ Rd, then |A|e ≤ |B|e.

Proof. If {Qk} is a countable cover of B by boxes, then it is also a cover of A
by boxes, so

|A|e ≤
∑

k

vol(Qk).

This is true for every possible covering of B, so

|A|e ≤ inf

{

∑

k

vol(Qk) : all countable covers of B by boxes

}

= |B|e. ⊓⊔

Since a box Q can be covered by a collection containing a single box (itself),
it follows from Definition 1.2 that |Q|e ≤ vol(Q). However, it requires some
care to show that the exterior measure of a box actually coincides with its
volume. In order to prove this, we will need the facts about volumes of boxes
given in the following exercise.

Exercise 1.12. Given two boxes Q and K in Rd whose interiors intersect,
observe that:

(a) Q ∩ K is a box, and

(b) Q\K can be written as the union of finitely many boxes that only intersect
along their boundaries.

Use these facts to show that if a box Q is covered by finitely many boxes
Q1, . . . , QN , then

vol(Q) ≤
N

∑

k=1

vol(Qk). ♦ (1.2)

Theorem 1.13 (Consistency with Volume). If Q is a box in Rd, then
|Q|e = vol(Q).

Proof. Since we already know that |Q|e ≤ vol(Q), our task is to prove the
opposite inequality. Let {Qk} be a countable covering of Q by boxes, and fix
ε > 0. For each k, let Q∗

k be any box such that:

• Qk is contained in the interior of Q∗
k, i.e., Qk ⊆ (Q∗

k)◦, and

• vol(Q∗
k) ≤ (1 + ε) vol(Qk).

Then
Q ⊆

⋃

k

Qk ⊆
⋃

k

(Q∗
k)◦,

so {(Q∗
k)◦} is a countable open cover of Q. As Q is compact, this open cover

must have a finite subcover. That is, there is some integer N > 0 such that
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Q ⊆
N
⋃

k=1

(Q∗
k)◦ ⊆

N
⋃

k=1

Q∗
k.

Applying Exercise 1.12, we obtain the following fact about volumes:

vol(Q) ≤
N

∑

k=1

vol(Q∗
k) ≤ (1 + ε)

N
∑

k=1

vol(Qk) ≤ (1 + ε)
∑

k

vol(Qk).

Since this is true for every covering {Qk}k, it follows from the definition of
|Q|e that

vol(Q) ≤ (1 + ε) inf

{

∑

k

vol(Qk)

}

= (1 + ε) |Q|e.

However, ε is arbitrary, so vol(Q) ≤ |Q|e. ⊓⊔

Next we prove an important property of exterior Lebesgue measure called
countable subadditivity, which states that the exterior measure of a countable
union of sets is no more than the sum of the measures of the sets. Note that
we are not requiring the sets here to be disjoint.

Theorem 1.14 (Countable Subadditivity). If E1, E2, . . . ⊆ Rd, then
∣

∣

∣

∣

∞
⋃

k=1

Ek

∣

∣

∣

∣

e

≤
∑

k

|Ek|e.

Proof. If any Ek satisfies |Ek|e = ∞ then we are done, so let us assume that
|Ek|e < ∞ for every k. Fix any ε > 0. Then for each k ∈ N we can find a

covering {Q
(k)
j }j of Ek by countably many boxes Q

(k)
j in such a way that

∑

j

vol
(

Q
(k)
j

)

≤ |Ek|e +
ε

2k
. (1.3)

Then {Q
(k)
j }j,k is a covering of

S

Ek by countably many boxes:

⋃

k

Ek ⊆
⋃

k,j

Q
(k)
j .

Therefore
∣

∣

∣

⋃

k

Ek

∣

∣

∣

e
≤

∑

k,j

vol
(

Q
(k)
j

)

(by Definition 1.4)

≤
∑

k

(

|Ek|e +
ε

2k

)

(by equation (1.3))

=

(

∑

k

|Ek|e

)

+ ε.

Since ε is arbitrary, the result follows. ⊓⊔
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Remark 1.15. (a) The proofs of Theorems 1.13 and 1.14 illustrate two useful
ways of “getting within ε” when dealing with countable sums. In the proof of
Theorem 1.13 we introduced a multiplicative 1 + ε factor by constructing Q∗

k

so that vol(Q∗
k) ≤ (1 + ε) vol(Qk). In contrast, in the proof of Theorem 1.14

we introduced an additive term of the form 2−kε in equation (1.3). These two
techniques will be employed often in future proofs.

(b) Although we stated Theorem 1.14 for countably infinite collections of
sets E1, E2, . . . , it implicitly applies to finite collections as well. If we have
only finitely many sets E1, . . . , EN then we can simply define Ek = ∅ for
k > N and apply Theorem 1.14 to the sequence {Ek}k∈N to obtain

∣

∣

∣

∣

N
⋃

k=1

Ek

∣

∣

∣

∣

e

=

∣

∣

∣

∣

∞
⋃

k=1

Ek

∣

∣

∣

∣

e

≤
∞
∑

k=1

|Ek|e ≤
N

∑

k=1

|Ek|e.

By applying the same trick, other theorems that are stated for countably
infinite collections usually apply to finite collections as well.

(c) Subadditivity need not hold when dealing with uncountable collections
of sets. For example, we can write the real line as an uncountable union of
singletons:

R =
⋃

x∈R

{x}.

However |{x}|e = 0, so

|R|e = ∞ yet
∑

x∈R

|{x}|e = 0. ♦

Applying Theorem 1.14 to sets that have measure zero, we see that the
countable union of sets with measure zero has measure zero.

Corollary 1.16. If Zk ⊆ Rd and |Zk|e = 0 for each k ∈ N, then

∣

∣

∣

∞
⋃

k=1

Zk

∣

∣

∣

e
= 0. ♦

Our final theorem in this section gives a type of “regularity” property for
exterior Lebesgue measure: Every set E can be surrounded by an open set U
whose exterior measure is only ε larger than that of E. By monotonicity we
also have |E|e ≤ |U |e, so the measure of U is very close to the measure of E.

Theorem 1.17. Given E ⊆ Rd and ε > 0, there exists an open set U ⊇ E
such that

|E|e ≤ |U |e ≤ |E|e + ε.

Consequently,

|E|e = inf
{

|U |e : U is open and U ⊇ E
}

. (1.4)
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Proof. If |E|e = ∞, take U = Rd. Otherwise |E|e < ∞, so by definition
of exterior measure there must exist boxes Qk such that E ⊆

S

Qk and
∑

vol(Qk) < |E|e + ε
2 . Let Q∗

k be a larger box that contains Qk in its in-

terior and satisfies vol(Q∗
k) ≤ vol(Qk) + 2−k−1ε. Let U be the union of the

interiors of the boxes Q∗
k. Then U is open, E ⊆ U, and

|U |e ≤
∑

k

vol(Q∗
k) ≤

∑

k

vol(Qk) +
ε

2
< |E|e +

ε

2
+

ε

2
= |E|e + ε. ⊓⊔

If E has infinite exterior measure, then the set U constructed in Theorem
1.17 also has infinite measure. On the other hand, if |E|e < ∞, then by
applying Theorem 1.17 with ε

2 in place of ε we obtain the following corollary.

Corollary 1.18. Suppose E ⊆ Rd satisfies |E|e < ∞. Then for each ε > 0,
there exists an open set U ⊇ E such that

|E|e ≤ |U |e < |E|e + ε. ♦

Additional Problems

1.1. Show that |∅|e = 0 and |Rd|e = ∞.

1.2. Given a box Q in Rd, show that |Q◦|e = |Q|e.

1.3. Show that if a set E ⊆ Rd has nonempty interior, then |E|e > 0 (the
converse does not hold in general, see Problem 1.25).

1.4. Let Z be a subset of R such that |Z|e = 0. Set Z2 = {x2 : x ∈ Z}, and
show that |Z2|e = 0.

1.5. Find the exterior measures of the following subsets of R2.

(a) L = {(x, x) : 0 ≤ x ≤ 1}, the diagonal of the unit square in R2.

(b) An arbitrary line segment, ray, or line in R2.

1.6. Let {Ek}k∈N be a sequence of subsets of Rd, and define

lim sup Ek =
∞
⋂

j=1

(

∞
⋃

k=j

Ek

)

, lim inf Ek =
∞
⋃

j=1

(

∞
⋂

k=j

Ek

)

.

(a) Show that lim supEk consists of those points x ∈ Rd that belong to
infinitely many Ek, while lim inf Ek consists of those x which belong to all
but finitely many Ek (i.e., there exists some k0 ∈ N such that x ∈ Ek for all
k ≥ k0).

(b) Prove the Borel–Cantelli Lemma: If
∑

|Ek|e < ∞ then lim inf Ek and
lim sup Ek have exterior Lebesgue measure zero.

(c) Given a set E ⊆ Rd, show that |E|e = 0 if and only if there exist
countably many boxes Qk such that each point x ∈ E belongs to infinitely
many Qk and

∑

vol(Qk) < ∞.
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1.7. Let C be the Cantor set constructed in Example 1.8.

(a) The ternary expansion of x ∈ [0, 1] is

x =

∞
∑

n=1

cn

3n
,

where each cn is either 0, 1, or 2. Every point x ∈ [0, 1] has a unique ternary
expansion, except for points of the form x = m/3n with m, n integer, which
have two ternary expansions. Show that x belongs to C if and only if x has
at least one ternary expansion for which every cn is either 0 or 2, and use this
to show that C is uncountable.

(b) Show that C is perfect, C contains no interior points, and C = ∂C.

(c) Set

D =

{ ∞
∑

n=1

cn

3n
: cn = 0, 1

}

.

Show that D + D = [0, 1], and use this to show that C + C = [0, 2].

(d) Suppose U ⊆ R is an open, bounded set, and let U be its closure. Must
U\U be countable?

1.8. Modify the Cantor middle-thirds set construction as follows. Fix a pa-
rameter 0 < θ < 1, and at stage n remove intervals of relative length θ from
Fn to form Fn+1. Show that the generalized Cantor set Cθ = ∩Fn is perfect,
has no interior, equals its own boundary, and satisfies |Cθ|e = 0.

1.9. Show that a nonempty perfect subset of Rd must be uncountable.

1.10. Let S1 = {z ∈ C : |z| = 1}, the unit circle in the complex plane.
Fix z ∈ S1, and define T : S1 → S1 by T (x) = zx. Given x ∈ S1, the set
O(x) = {znx}n≥0 is called the forward orbit of x under T, and the cluster set
of x under T is

A(x) =
⋂

k≥0

O(zkx) =
⋂

k≥0

{znx}n≥k.

Prove the following statements.

(a) O(x) = O(x) ∪ A(x).

(b) T maps A(x) into itself.

For the remainder of this problem assume that O(x) is compact. Then from
part (a) we obtain A(x) ⊆ O(x), so there is a smallest nonnegative integer n0

such that zn0x ∈ A(x). Prove the following statements.

(c) O(zn0x) = A(x) = A(zn0x).

(d) If A(x) is infinite then it is perfect (where we identify C with R2).

(e) O(x) is finite.


