Here are a few practice problems on groups. The first ones are easier and the later ones are harder.

1. Let $A(\mathbb{R})$ be the set of all bijections of the real line \mathbb{R} onto itself. We know that this is a group under the operation of composition of functions (you do not need to prove that fact).

 (a) Identify three different functions that belong to $A(\mathbb{R})$, i.e., give a formula for three functions that belong to $A(\mathbb{R})$.

 Note: You don’t need to prove that your functions are bijections, you just need to give formulas for three functions that are bijections.

 (b) Identify the identity element of $A(\mathbb{R})$, i.e., give the formula for the function that is the identity of $A(\mathbb{R})$. Prove that your function is indeed the identity element of $A(\mathbb{R})$.

 (c) Let $f(x) = x + 1$. Determine (with proof) whether f has finite order or not.

2. Let G and H be groups, and let $f: G \to H$ be a homomorphism.

 (a) Suppose that $x \in G$. Let k be the order of x, and let m be the order of $f(x)$. Without appealing to any theorems on order, show directly that m divides k.

 Hint: $k = mj + r$.

 (b) Show that if $|G|$ and $|H|$ are relatively prime (no common divisors) then $\ker(f) = G$.

3. Suppose that M is a normal subgroup of a group G, and N is a normal subgroup of a group H. Then the set $M \times N$ is a normal subgroup of $G \times H$ (you do not need to prove this).

 (a) Define $f: G \times H \to (G/M) \times (H/N)$ by

 $$f((a, b)) = (Ma, Nb), \quad (a, b) \in G \times H.$$

 Show that f is a surjective homomorphism.

 (b) Use the First Homomorphism Theorem to show that

 $$(G \times H)/(M \times N) \cong (G/M) \times (H/N).$$

4. Suppose that G is a finite abelian group with order $|G| > 1$. Suppose there exists a prime number p such that for each $a \in G$ there exists a positive integer k such that $a^{pk} = e$ (the integer k depends on the element a). Show that $|G| = p^n$ for some integer n.

5. Suppose that M, N are normal subgroups of a group G, and $M \cap N = \{e\}$. Prove that MN is a normal subgroup of G, and $M \times N \cong MN$.

6. Suppose that M, N are normal subgroups of a group G, and $MN = G$.

 (a) Define $f : G \to G/M \times G/N$ by $f(a) = (Ma, Na)$ for $a \in G$. Prove that f is a surjective homomorphism of G onto $G/M \times G/N$.

 Hint: Surjective is the hard part, do all the other parts of this problem first.

 (b) Prove that $\ker(f) = M \cap N$.

 (c) Given the results from parts (a) and (b), what does the First Homomorphism Theorem now imply?

7. Let G be a group. Let C be the set of all commutators of elements of G, i.e.,
 $$ C = \{xyx^{-1}y^{-1} : x, y \in G\}. $$

 Unfortunately, C need not be a subgroup of G. Therefore we define the commutator subgroup C' to be the subgroup "generated by" C. Specifically, this means that C' is the intersection of all subgroups of G that contain C:
 $$ C' = \bigcap\{H : H \text{ is a subgroup of } G \text{ and } C \subseteq H\}. $$

 (a) Prove that C' is a normal subgroup of G (prove both that C' is a subgroup, and that it is normal).

 (b) Prove that G/C' is abelian.