2.5 #15. Suppose that N is a normal subgroup of a group G, and $f : G \rightarrow G'$ is a homomorphism of G onto G'. Prove that $f(N)$ is a normal subgroup of G'.

Solution
First we must prove that $f(N)$ is a subgroup, and then we must prove that it is normal. Remember that $f(N)$ is the direct image of N, which means that

$$f(N) = \{ f(n) : n \in N \}.$$

Suppose that x, y belong to $f(N)$. Then, by definition of $f(N)$, we must have $x = f(m)$ and $y = f(n)$ for some $m, n \in N$. Since N is a subgroup, we know that mn belongs to N. Hence $f(mn) \in f(N)$, again by the definition of $f(N)$. Since f is a homomorphism, we therefore have

$$xy = f(m)f(n) = f(mn) \in f(N).$$

Hence $f(N)$ is closed under compositions.

Now suppose that x belongs to $f(N)$. This means that $x = f(n)$ for some $n \in N$. Since N is a subgroup, we have $n^{-1} \in N$, and therefore $f(n^{-1}) \in f(N)$. Since f is a homomorphism, we therefore have

$$x^{-1} = f(n)^{-1} = f(n^{-1}) \in f(N).$$

Thus $f(N)$ is closed under inverses. Since $f(N)$ is nonempty (WHY?), we conclude that $f(N)$ is indeed a subgroup of G'.

Now we show that $f(N)$ is normal. Suppose that a is any element of G'. We must show that $af(N)a^{-1} \subseteq f(N)$. By definition,

$$af(N)a^{-1} = \{ axa^{-1} : x \in f(N) \}.$$

Therefore, our task is to show that if x is any element of $f(N)$, then axa^{-1} is an an element of $f(N)$.

So, let x be any element of $f(N)$. Then, by definition, $x = f(n)$ for some $n \in N$. Also, since f is onto, we know that $a = f(g)$ for some $g \in G$. Using the fact that N is normal, we see that

$$gng^{-1} \in gNg^{-1} = N.$$

Since $gng^{-1} \in N$, we therefore have $f(gng^{-1}) \in f(N)$. Finally, using the fact that f is a homomorphism, it follows that

$$axa^{-1} = f(g)f(n)f(g)^{-1} = f(gng^{-1}) \in f(N).$$

Thus, we have shown that every element of $af(N)a^{-1}$ belongs to $f(N)$, so we conclude that $af(N)a^{-1} \subseteq f(N)$. Therefore $f(N)$ is normal. □