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Linear Spaces

3.1 Introduction

Now we hook up with the text by Apostol. Chapters 1 and 2 of Apostol
review some facts about linear algebra in R™. You should have seen much of
that material (though perhaps not all) when you took MATH 1502 (Calcu-
lus IT) or MATH 1522 (Linear Algebra for Calculus). It would be a good idea
for you to skim through Chapters 1 and 2 of Apostol now, but don’t worry
about reading every tiny detail. Our course is MATH 2406, whose title is Ab-
stract Vector Spaces, so we are going to be doing linear algebra in all kinds
of abstract spaces, not just in R"™. There will be a lot of similarities to how
things work in R”™, but also a lot of interesting differences. The notes below
will parallel the sections of Chapter 3 of Apostol’s text but will also include
some extra discussion and exercises.

3.2 Axiomatic Definition of a Vector Space

There are many different types of objects that we work with—numbers, func-
tions, functions whose domain is a set of functions, and so on and so forth.
And yet, when we try to prove things in these various and seemingly different
contexts, we often find a lot of similarities. For example, we can add num-
bers, and we can also add functions, and these addition operations have a
lot of properties in common. If we can see the commonalities, then we can
prove facts that hold not just in one setting, but in many different settings.
That is one reason why we introduce “abstract” definitions, like the following
definition of a vector space.

Definition 3.1. Let V be a nonempty set. We will call the elements of V'
vectors (regardless of whether they are numbers, functions, apples, operators,
whatever). The set V is a vector space if the following 10 axioms are simulta-
neously satisfied.
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2 3 Linear Spaces

Closure Azioms

(1) Vector addition: There has to be an operation that takes two vectors
x, y € V and gives us another vector in V. We call this operation vector
addition (even though it might not have anything to do with “addition” in
the usual sense), and we write x + y for the vector that we get when we apply
the operation to z and y. In other words,

Va,y €V, 3 aunique element z+y € V.

(2) Scalar multiplication: There has to be another operation that takes a
vector x € V' and a real number ¢ € R and gives us another vector in V. We
call this operation scalar multiplication, and we write cx for the vector that
we get when we apply this operation to z and c. In other words,

VexeV, VeeC, 3 aunique element cx € V.

In the context of vector spaces, we call R the set of scalars or field of scalars,
and we refer to a real number ¢ € R as a scalar.

Addition Axioms
(3) Commutativity: We must have z + y =y +z for all z, y € V.

(4) Associativity: We must have (z4+y)+z=x+ (y+2) forall z, y € V.
(5) Additive Identity: There must exist an element 0 € V' that satisfies

r+0 ==z forall z € V.

We call this vector 0 the zero element or the zero vector for the vector space.

(6) Additive Inverses: For each vector z € V, there must be a vector
(—x) € V that satisfies
z+ (—x) = 0.

Multiplication Axioms
(7) Associativity: We must have (ab)z = a(bz) for all a, b € R and x € V.

(8) Multiplicative Identity: Scalar multiplication by the number 1 must
satisfy 1z = x for every z € V.

Distributive Axioms
(9) We must have

ez +y) = cx+ ey, for all z,y € V and ¢ € R.
(10) We must have
(a+ bz = azx+ bz, for all z € V and a,b € R.

We call V' a vector if all ten of these axioms are satisfied. If any one axiom
fails, then V' is not called a vector space. <
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Although Apostol prefers the term “linear space,” 1 like “vector space”
better so I will use that term in these notes. However, these two terms are
entirely equivalent and mean exactly the same thing.

3.3 Examples of Vector Spaces

Ezample 3.2. You should check that R™ is a vector space. The operation of
vector addition on R™ is simply componentwise addition, i.e.,

T1 Y1 1+ Y1
Tn Yn Tn + Yn
Scalar multiplication is also defined componentwise, i.e.,

X1 CTq

Tn CTp

The zero element of R™ (i.e., the additive identity) is the vector

Note that we use the same symbol 0 to denote both the zero vector and the
number zero. You have to tell by context what 0 is supposed to mean. What
is the additive inverse of a vector z? <

Exercise 3.3. We will use this example a lot. Consider the set of all functions
that map real numbers to real numbers. We’ve seen this set before, and we
called it

FR) ={f: [:R—>R}

For example, the function f whose rule is f(z) = sinx is one vector in this
space. Every function whose domain and codomain is the real line R is a
vector in this space. You should think of each such function as being one
“point” in the set F(R).

There are many operations that we can perform on functions. For example,
we know how to add functions, multiply a function by a scalar, multiply two
functions together, compose two functions, and so forth. In order to make
F(R) into a vector space, we are going to focus on just two of these operations.
The first is addition of functions; this will be our vector addition in this space.
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4 3 Linear Spaces

Vector addition in F(R)

Let f and g be two vectors in F(R). That this just means that f, g € F(R),
i.e., we have two functions f and g that map real numbers to real numbers.
We define vector addition by declaring that h = f + ¢ is the function whose
rule is

hz) = (f+9)(=) = f(x) +9(z), zeR.

Scalar multiplication in F(R)

Let f be a vector in F(R), and let ¢ be a scalar. This just means that
f € F(R) and ¢ € R. We define scalar multiplication by declaring that k = cf
is the function whose rule is

k@) = (f)(@) = cf(x), xR

Verify that F(R) is a vector space

Now that we have defined the operations on F(R), the point of this exercise
is to show that all ten of the vector space axioms are satisfied. When you do
this, be careful to distinguish between elements of F(R), which are functions,
and the value f(x), which is the number that is output by f at the input x.
For example, to prove associativity, we must show that if f, g, h are any three
vectors (functions) in F(R), then f+ (¢+h) = (f +g) + h. How do you show
that the function f + (g 4+ h) equals the function (f + g) + A? You have to
show that they have the same rule. So, you let z be any real number, and then
you have to verify that (f + (¢ +h))(x) and (f +g) + h)(x) are the same real
number. Now, you get to use the fact that these are numbers, and we know
that addition of numbers is associative. We can argue as follows:

(f+(g+h)(x) = f
= f
= (f(z)+ g(z)) + h(z) associativity of NUMBERS

= (f+9)(x)+ h(x) definition of vector addition

(

x)+ (g + h)(x) definition of vector addition

(
(

) +
x) + (g(x) + h(x)) definition of vector addition

= ((f+9)+h)(x) definition of vector addition.
This shows that f + (¢ + h) and (f + g) + h output the same value for every
input x, so they have the same rule and therefore are the same function.

Now, that only takes care of one of the axioms, you still have to verify
that all of the other axioms hold. Let’s look at the additive identity axiom.
We need to show that there is a vector 0 in F(R) that satisfies 0+ f = f
for every f € F(R). This vector 0 has to be a function in F(R). We use the
same symbol for the function 0 and the number 0, so you have to use context
to tell what is meant. The function 0 is the function whose rule is

0(z) = 0, z €R.



3.3 Examples of Vector Spaces 5

The 0 on the left-hand side of the equation on the preceding line represents
the function 0, while the 0 on the right-hand side represents the number 0.
Now you need to verify that if f is any vector in F(R), then f + 0 = f. To
do this, you have to check that f 4+ 0 and f have the same rule, so you have
to show that (f +0)(z) and f(z) are equal for every z. Do it! And also verify
that all of the other axioms hold! ¢

Exercise 3.4. Even though we refer to the vector addition operation as “ad-
dition” and we represent it with the symbol +, the actual vector addition
operation on a given vector space doesn’t have to have anything to do with
“addition” as such. I’ll try to give an example where the operation isn’t an
“addition,” although I have to admit that this example isn’t perfect because
we’re not going to end up with a vector space. But the lesson to take away is
that the vector addition operation can be any kind of operation—as long as
it satisfies the axioms in the definition of a vector space.

For this example, we keep V = F(R), but instead of using addition of
functions as our vector addition, we’re going to use composition. That is, we
declare that for this example f + g means the composition of f and g, i.e.,

f+g = fogy, fr9€ FR).

On the other hand, we will leave scalar multiplication alone, so c¢f still means
the function whose ruleis (¢f)(z) = cf (z) for € R. Your task is to determine
exactly which of the axioms hold and which fail, using these definitions of
vector addition and scalar multiplication.

To prove that an axiom fails you generally just need to give a single coun-
terexample. For example, we have seen before that composition is not always
commutative. So, to show that Axiom (3) in the definition of a vector space
fails, you just have to show me two specific functions f and g such that
f+ g = fogisnot the same as g + f = go f. You need to give the rules
for two specific functions, and then you have to show that there is a specific
point z where (f + g)(x) = f(g(z)) is not equal to (g + f)(z) = g(f(z)). You
just need one value of z for which equality fails, because then you know that
these two functions f + g and g + f don’t have the same rule and therefore
aren’t the same function.

Once you’ve done that, you know that the commutativity axiom fails, so
you know that F(R) is NOT a vector space using these operations. However,
for this exercise you need to determine EXACTLY which axioms are true and
which fail. For example, we proved before that composition of functions is
associative, so we have already proved that Axiom (4) does hold (you don’t
need to prove this again since we’ve already done it).

Here’s a hint on Axiom (5): there IS an “additive identity” for this defini-
tion of vector addition. It’s not the zero function that we used in Exercise 3.3.
If we keep the symbol 0 for the function whose rule is 0(z) = 0 for every =z,
then we have

(f+0)(@) = (foO)(x) = f(O(x)) = f(0), =z€eR.
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So we're not going to get f + 0 = 0 for every f (give a specific example of
an f for which this fails!). The zero function is NOT the additive identity
when vector addition is defined to be composition. But there is one—what is
it? Let’s give it a different name, let’s call it z instead of 0. What is the rule
for the function z that satisfies f + z = f for every f, when vector addition
means composition?

Exercise 3.5. Again let V = F(R), but let “vector addition” mean mul-
tiplication of functions, i.e., we let f + g be the function whose rule is
(f +9)(x) = f(z)g(x) for + € R. Determine which of the ten axioms hold,
and which ones fail. <

Exercise 3.6. Fix positive integers m and n, and let M, «,, be the set of all
m X n matrices. Define “vector addition” to be ordinary addition of matrices,
and “scalar multiplication” is the usual multiplication of a matrix by a scalar.
Show that M,,«, is a vector space! <

We will see many more examples of vector spaces as we go along.

3.4 Some Consequences of the Vector Space Axioms

We will prove a few facts that follow immediately from the definition of a
vector space. As we go along, we will prove many other facts, many of which
require us to think more carefully and be more clever than we are in these
proofs.

First we’ll prove that there is only one zero vector in a vector space.

Lemma 3.7. A vector space can have only one zero element.

Proof. Let V be a vector space. One of the vector space axioms tells us that
there has to be a zero vector in V, but it doesn’t tell us that there couldn’t be
two of them (or more). The standard way to show that there can be only one
something with a given property is to say “suppose that a and b both have
this property” and then prove that a must equal b. This tells us that there’s
only one thing that has the property.

So, suppose that we had two things that were both zero vectors. Let’s call
them a and b. Note that I’'m not assuming that a is not equal to b. If I wanted
to do a proof by contradiction, then I would add that as the assumption
to be contradicted, but I'm going to a direct proof instead of a proof by
contradiction.

So, we've got these two vectors a and b that are both zero vectors. This
means that

at+z = m, for all x € V, (3.1)

and similarly
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3.4 Some Consequences of the Vector Space Axioms 7

b+z = =z, forall z € V. (3.2)

Since equation (3.1) holds for every vector z, it holds for the specific vector
x = b. Plugging = = b into equation (3.1), we see that
a+b =0
Similarly, taking = a in equation (3.2), it follows that
b+a = a.
Since vector addition is commutative, we therefore have
a =b+a =a+b =0

Hence a and b are actually the same element, and therefore there’s only one
zero vector in V. O

Remember that we have to be careful to only use facts that are either given
in the definitions are that we have already proved. Just because something
seems “obvious,” it might not be true. We have to prove that things are true.
For example, it seems “obvious” that if x is a vector then Oz, the scalar
product of the number zero with the vector x, must be the zero vector. But
how do we know this? We have to give a proof. Here it is.

Lemma 3.8. If x is a vector in a vector space V, then Ox is the zero vector
m V.

Proof. To make the notation simpler, let h = Ox. We must show that A = 0
(note the difference between this 0 and the 0 in the symbols 0x). First let’s
do a little calculation. We have

h+h = (0x)+ (0z) definition of h
= (0+0)x Distributive Law
= Oz Arithmetic of numbers
= h definition of h.

So h + h = h. We want to show that this implies that A = 0, but we can
only use the axioms and things we’ve already proved. One of the axioms tells
us that i has an inverse element —h. (I suspect that h and —h are both the
zero vector, but I haven’t proved that yet, so I can’t just assume that it true.)
Adding —h to both sides of the equation h + h = h, we obtain

(h+h)+ (=h) = h+(=h).

On the right-hand side, we can apply the additive inverse axiom, which tells us
that h+(—h) = 0. On the left-hand side, we can use associativity to rearrange
parentheses. Doing these two things, we obtain
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h+(h+(=h)) = 0.
Applying the additive inverse axiom again, we get
h+0 = 0.
The additive identity axiom tells us that h + 0 = h, so it follows that
h = 0.
Since h = 0z, we’ve shown that 0z = 0. 0O

Now let’s prove that (—1)x, which is the scalar product of the number —1
with the vector x, is the same as the additive inverse —zx.

Lemma 3.9. If x is a vector in a vector space V, then (—1)x is an additive
inverse for x.

Proof. One of the vector space axioms tells us that 1z = z. Therefore we have

z+(-1)z = lz+ (-1 Multiplicative identity axiom
= 1+ (-1 Distributive axiom
= Oz Arithmetic of numbers

=0 by Lemma 3.8.

Hence (—1)z is an additive inverse for x. (Note that I said “an”—for all we
know right now, there might be more than one additive inverse. There isn’t,
but we haven’t proved that yet.) O

Here are some more facts. I'm going to state these as exercises—you should
try to prove them yourself, without looking at the textbook. But if you get
stuck, you can look in the text, as several of these are worked out there (though
not always with complete details).

Exercise 3.10. Let V' be a vector space, and let x be any vector in V. Show
that there is only one additive inverse for . To do this, you have to assume
that there were two vectors, say y and z, that both satisfied x + y = 0 and
x4+ z = 0, and from this you somehow have to deduce that y = z. Be very
careful—you can only use what is given in the definition of a vector space! For
example, we have NOT defined a “subtraction” operation, and we have NOT
proved that you can subtract a term from both sides of an equation! On the
other hand, you CAN add things (like an additive inverse) to both sides of an
equation!
Also prove the following facts.

(a) ¢c0 = 0 for every scalar ¢ € R. (Note that both 0’s in this equation
represent the zero vector.)
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b) (—c)x = —(cx) = ¢(—x) for all z € V and ¢ € R.

(
¢) Given ¢ € R and z € V, if we have cx = 0 then either ¢ =0 or x = 0.

I
If ax = bx for some x € V and scalars a # 0, then a = b.

(

(

(d) If cx = cy for some z, y € V and scalar ¢ # 0, then x = y.
(e

(

)
f) —(z+y)=(-2)+ (-y).
(g) v+ 2 =2z, v+ 2+ 2 =3z, and so forth (use induction).

Notation 3.11 (Subtraction). From now on, we will write x—y for z+(—y).
That is, we declare that x — y means

r—y = 2+ (-p).
We call x — y the difference of x and y. <

Subtraction is a good example of an operation that isn’t associative. You
check this, just with real numbers—show that subtractive of real numbers is
neither associative nor commutative.

3.5 Exercises

Section 3.5 in Apostol’s text consists of problems for you to work. A se-
lection of suggested problems from his list is given on the class website.
Below are some additional exercises for you to work.

Definition 3.12. . Given real numbers a < b, we let
Cla,b] = {f : f is a continuous function mapping [a, b] into R}.
For each f, g € Cla,b], we define their inner product to be the number
b
(o) = [ 1@ g(e) da.

The L', L?, and L> norms of f € Cla,b] are defined to be

b
Il = / (@) dz,

b 1/2
1l = ( / |f<z>|2dsc) ,
I flloo = zrg[%]\f(w)l,

respectively. <
(©2011 Christopher Heil
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Here are a couple of facts about continuous functions that you can use
without proof.

(a) Each function f € Cla,b] is bounded. Hence, if f € Cla,b] there is a
number M > 0 such that

/()]

IN

M, all z € [a,b].

(b) A continuous function f on the interval [a,b] must achieve a max
and min at some point. The absolute value of a continuous function is also
continuous, so | f| must also achieve a maximum at some point. That is, there
is at least one point ¢ € [a, b] such that

[f(O)] = max [f(z)].

z€Ja,b]

For this ¢ we have
[f@)| < [f®),  allz€la,b].

(¢c) If f € Cla,b] is continuous and f(x) # 0 for some point x, then there
exists a 6 > 0 such that

Vy € a,b], |z—y|<d = fly)#0.
Now we state several exercises.

3.1. Prove that Cl[a,b] is a vector space (the operations are the usual ones of
addition of functions and multiplication of a function by a scalar).

3.2. Prove the following facts about the inner product of functions in Cla, b].
These facts show that the inner product of functions has properties that are
analogous to those satisfied by the dot product of vectors in R™.

(a) 0 < (f, f) < oo for each f € Cla,b].

(b) {(f, f) = 0 if and only if f = 0. Note that f = 0 means that f is the
zero function.

(c) {f,9) = (g, f) for all f, g € Cla,b].
(d) (f+g,h) = (f h) +(g,h) for all f, g, h € Cla,b].
(e) The Cauchy—Schwarz Inequality:

Vfg€Cladl, [fg)l < [Ifll2llgll2
3.3. Prove the following facts about the L® norm of functions in Cfa, b].
() 0 < ||f]loo < oo for all f € Cla,b].
(b) |flloc = 0 if and only if f = 0.
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(©) leflloo = lel | flloo for all f € Cla,b] and ¢ € R.

(d) [f +glloe < Iflloc + llglloc for all f, g € Cla, b]

Note: Be careful in this part, I want to see a correct proof that the maxi-
mum on the left-hand side of the inequality above is less than or equal to the
sum of the maxima on the right-hand side of the inequality.

3.4. Prove that the L' norm of functions in C|[a, b] satisfies the same properties
(a)—(d) that are given in the preceding problem (i.e., show that if we replace
I/ llco by |If]l1, then (a)—(d) still hold).

3.5. Prove the following facts about the relationship between the L' and the
L*> norms on Cla, b].

(a) Vf e Clab], [[flh<=a)llfle-

(b) Give an example of a function f such that equality holds in part (a),
and give another example of a function such that strict inequality holds in

part (a).
(c) Show that no matter what real number C' > 0 we choose, the following
statement is FALSE:

erC[a,b], ”fHOO < CHf”l

Compare this to the statement made in part (a) of this problem!

3.6 Subspaces

3.6.1 The Definition of a Subspace

It can be rather painful to prove that a given set is a vector space, because
we have to prove that all ten of the axioms given in the definition of a vector
space are satisfied. However, many times we are interested in sets that are
part of some larger set that we already know is a vector space. We will see
that if we know that V is a vector space and we have a set S C V, then
we can determine with only a little work whether or not S is itself a vector
space (assuming that we use the same operations that we used on V). First,
however, we give a name to subsets that are themselves vector spaces.

Definition 3.13 (Subspace). Let V' be a vector space. A subset S of V is
called a subspace of V if S is a vector space. That is, S must satisfy all ten

of the vector space axioms (using the same operations on S that we used
onV). <&

(©2011 Christopher Heil
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We will show that in order to check whether S is a subspace, we only have
to check TWO of the vector spaces axioms, not all ten of them. The two
axioms that we have to check are the closure axioms. In other words, we will
show that S is a subspace if and only if it is closed under both vector addition
and scalar multiplication. Well, technically there is one other requirement—we
have to know that S is not empty.

Theorem 3.14. Let V be a vector space and let S be a nonempty subset of V.
Then S is a subspace if and only if the following two statements hold.

(a) Ifz,y €S thenx +y € S.
(b) If z € S and ¢ € R then cx € S.

Proof. =. Suppose that S is subspace. Then S satisfies all ten of the vector
space axioms. Statements (a) and (b) are simply the first two of the axioms,
so they are satisfied.

<. Now suppose that what we know is that S satisfies statements (a)
and (b). This tells us that S satisfies the first two of the vector space axioms,
and our task is to prove that all of the remaining eight axioms are satisfied as
well.

The easy ones to check are the axioms that are worded purely in terms
of a “for all” statement. For example, to prove that Axiom (3) in the vector
space definition holds, we have to prove that z +y = y + « for all z, y € S.
But we already know that the big space V' is a vector space, so we know that
Axiom (3) holds for V. In other words, we know that x +y = y + « for all
x,y € V. Since S is just part of V, something that holds for all vectors in V'
must hold for vectors in S. Hence = + y = y + « holds for z, y € S because it
holds for all vectors z, y € V.

In fact, this argument takes care of Axioms (3), (4), (7), (8), (9), and (10).
The only axiom that isn’t worded purely as a “for all” statement are Axiom
(5), the existence of a zero vector, and Axiom (6), the existence of additive
inverses. So, we need to be a little more careful in how we prove that these
axioms hold for S.

Let’s look at the zero vector issue first. Since V is a vector space, we know
that V' has a zero vector. There is a vector, which we call 0, that satisfies
0+ x = x for all x € V. Since S is a subset of V, it is true that 0 + z = «x for
all z € S, but this isn’t quite what we need. The point of Axiom (5) is that
there is a zero vector in the set S. We know that there’s a zero vector in V
but is it in 5?7

Well, we know that S is nonempty, so we know that there is some vector x
that belongs to S. We don’t know that the zero vector belongs to S, but we
do know that S is closed under vector addition (that’s statement (a)), so we
know that cx € S for every scalar c. In particular, by taking ¢ = 0 (the number
zero), we know that Oz € S. And Lemma 3.8 tells us that Ox is the zero vector
in V. That is 0x = 0. Since we know that 0z belongs to S, it follows that
0 € S. Hence S contains the zero vector, so Axiom (5) is satisfied.
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The remaining thing we have to check is that Axiom (6) is satisfied. Given
a vector x € S, we know that = belongs to V. Since V is a vector space, x
has an additive inverse (—z), i.e., there is a vector (—z) € V that satisfies
x + (—x) = 0. But the problem is that we have to show that —x belongs
to S. We know —z belongs to V, but is it in S? 1T assign this part to you:
Prove that —z has to be in S. Hint: Use the fact that S is closed under scalar
multiplication. O

You should ask yourself the following question: If you have a set S that
is a subset of a vector space V, and you prove that S is closed under vector
addition and scalar addition (i.e., both statements (a) and (b) in the preceding
theorem are satisfied), can you conclude that S is a subspace? The answer is
NO. There does exist a subset of V' that is closed under vector addition and
scalar multiplication but is NOT a subspace. What is it?

Exercise 3.15. Let V be a vector space. Prove that the empty set @ is closed
under vector addition and scalar multiplication.

3.6.2 Examples

Here are some examples.

Exercise 3.16. Let C(R) be the set of all functions f: R — R that are
continuous at every point. Since C(R) is a set of functions that map real
numbers to real numbers, it is a subset of the set of all functions that map
real numbers to real numbers. In other words,

CR) € F(R).

The symbols “C” mean subset, they do not mean subspace. Your exercise is
to prove that C'(R) is a subspace of F(R). Implicitly, we are using the same
operations on C'(R) that we use on F(R). That means that vector addition
in C(R) is addition of functions, and scalar multiplication is multiplication
of a function by a scalar. To prove that C(R) is a subspace, you just have to
prove the following three things.

(a) C(R) is nonempty. Often (but not always) the easiest way to prove
that a set is nonempty is to show that the zero element belongs to it. So you
could prove that C(R) is nonempty by proving that the zero function belongs
to C(R). So, what is the the zero function and does it belong to C'(R), i.e.,
is it continuous?

(b) C(R) is closed under vector addition. To do this, you have to prove
that if f, g € C(R) then f+g € C(R). In other words, you have to show that
if f, g are two continuous functions then f + g is also a continuous function
(maybe we already did this?).

(©2011 Christopher Heil
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(¢c) C(R) is closed under scalar multiplication. Here you must show that
if f € C(R) and c € R, then c¢f € C(R).

Once you proved that statements (a), (b), and (¢) above hold, then you know
(because of Theorem 3.14) that C(R) is a subspace of F(R). Hence C'(R) is
itself a vector space. Consequently, you know that all ten of the vector space
axioms are satisfied for C(R) because Theorem 3.14 tells you that they must
be, but it’s a good idea to ask yourself why they are true. Is it true that
f+g=g+ fforall f, g € C(R)? Can you explain why this follows from
something we know about F(R)? But can you also give a direct proof of this
fact? &

Exercise 3.17. Show that

= {feC®):f(1)=0}

is a subspace of C(R). Can you do this by applying Theorem 3.14 using
V =C(R)? (Yes. Why are you allowed to do this?) ¢

Exercise 3.18. Show that

={feC®):f(1)=1

is NOT a subspace of C(R). There are several ways to do this problem. Here
are some.

(a) If you show that T is not closed under vector addition, then it doesn’t
satisfy one of the vector space axioms, so it can’t be a vector space. Also, this
would show that T doesn’t satisfy the requirements given in Theorem 3.14,
so T' can’t be a subspace.

(b) You could instead show that 7" is not closed under scalar multiplication.
Do you need to prove that T isn’t closed under BOTH vector addition and
scalar multiplication? (No, why not?).

(¢) You could show that the zero function does not belong to T. A subspace
is a vector space, so it MUST contain the zero vector. If it doesn’t, then it
can’t be a vector space, so it can’t be a subspace. (Note that the converse of
this statement isn’t true: a subset that contains the zero vector need not be
a subspace.)

Exercise 3.19. Determine whether the following subsets of R? are subspaces
of R2. (Proof required.)

(a) X ={(z,y) eR?:y =1}.

(b) Q1 ={(z,y) e R? 1 2,y > 0}.
(c) Q2= {(z,y) e R? 12,y > 0}.
(d)S {(a,3a) : a € R}.

(e) Z* = {(m,n) :m,neZZ} &
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Exercise 3.20. (a) Give an example of a subset of R? that is closed under
vector addition but not closed under scalar multiplication.

(b) Give an example of a subset of R? that is closed under scalar multi-
plication but not closed under vector addition.

(¢) Give an example of a subset of F(R) that is closed under vector addi-
tion but not closed under scalar multiplication.

(d) Give an example of a subset of F(R) that is closed under scalar mul-
tiplication but not closed under vector addition.

(e) Let V' be a vector space. Show that if S is a nonempty subset of V'
and S is closed under scalar multiplication then 0 € S. Must S be a subspace
of V? &

Exercise 3.21. (a) Let P, be the set of all polynomials with degree at most n:
Prn = {an2™ + -+ a1z + ap : ag,a1,...,a, € R}.
Prove that P,, is a subspace of C(R).
(b) Let P be the set of all polynomials of any degree:
P = {apz" + -+ a1x4+ap:n>0,a9,a1,...,a, € R}.
Prove that P is a subspace of C(R).
(c) Prove that P is the union of Py, Py, Pa, ..., i€,

P=UPn=PUPLUPU:---.
n=0

Hence the union of the subspaces P,, gives us the subspace P.

(d) Is it true that the union of subspaces is always a subspace? (No.) Give
an example of two subspaces S and T of R? such that SUT is NOT a subspace
of R2. ¢

Exercise 3.22. Fix positive integers m and n, and recall from Exercise 3.6
that the set M,,xn of all m x n matrices is a vector space (what are the

operations?).
(a) Show that
S = {{1(1] :a,b,cGR}
bec
is not a subspace of Mayos.
(c) Let S be the set of all symmetric 2 x 2 matrices. Show that S is a
subspace of Msys. Recall that a 2 x 2 matrix is symmetric if it equals its own

121, . 12 .
transpose. For example, [ 9 3] is symmetric, but [3 3} is not.
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(¢) Let S be the set of all symmetric 3 x 3 matrices. Show that S is a
subspace of M3zy3.

(d) Can you generalize part (b) to arbitrary sizes of matrices, i.e., if n is
any positive integer and S is the set of all symmetric n X n matrices, can you
show that S is a subspace of M,,«,? (It is a subspace—the issue is figuring
out how to write a proof that isn’t limited to just one particular size, like 3 x 3
matrices.) <

Exercise 3.23. Let S be the set of all infinite sequences of real numbers:
S = {x cx = (x1,22,...) where 21,29, -+ € R}.

For example, x = (1,2,3,4,...) is one element of S.
(a) Prove that S is a vector space. (Sadly, you have to check all ten axioms.)

(b) Let

0= {x—(ml,xg,...)GS : Zxk|<oo}.
k=1

Determine whether the following vectors belong to £!:

0 = (0,0,0,...),

e = (1,-1,1,~1,...),
y= 0318 )

2= (1,550

w= (L1,

Prove that ¢! is a subspace of S.
(c) Let

co = {x(xl,xg,...)GS : klim xkO}.

Determine which of the vectors from part (b) belong to ¢g, and prove that ¢
is a subspace of S.

(d) Is  Cep? Isco C L2 O

3.6.3 Some Properties of Subspaces

The next exercise shows that every vector space contains at least two
subspaces.

(©2011 Christopher Heil
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Exercise 3.24. Let V be a vector space.

(a) Show that S = {0} (the set that just contains the zero vector) is a
subspace of V.

(b) Show that V is a subspace of V.
(c) Show that @ is not a subspace of V.

(d) Suppose that S is a subspace, and S # {0}. In order for this to happen,
there must be at least one nonzero vector in S, i.e., there must be some
vector & € S such that x # 0. Prove that in this case there must infinitely
many vectors in S. Consequently, there’s only one subspace of V' that contains
finitely many vectors, and it is the subspace {0}. <

Thus {0} and V are always subspaces of a vector space V. We call these
the trivial subspaces of V.

Note that 0 is not a subspace of V. A subspace is a set of vectors, but 0 is
just a vector, not a set of vectors. Hence the smallest possible subspace of V' is
the set {0}. (Even so, it is true that mathematicians are often lazy and write
“0 is a subspace” when they really mean that “{0} is a subspace.” You're not
allowed to do this in this class.)

If you did part (d) of Exercise 3.21, then you know that the union of two
subspaces might not be a subspace. (If you haven’t solved that yet, here’s
a hint: Let S be the z-axis in R? and let T be the y-axis in R?. Are these
subspaces? Is SUT?)

But what about intersections of subspaces?

Lemma 3.25. If S and T are subspaces of a vector space V, then SNT is a
subspace of V.

Proof. Suppose that S and T are subspaces. We have to show that SN7T is
nonempty, is closed under vector addition, and is closed under scalar multi-
plication.

The nonempty part is easy, because S and T" must both contain the zero
vector. That is, 0 € S and 0 € T. So, by definition of intersection, we have
0 € SNT. This shows that SN T is nonempty.

To prove closure under vector addition, suppose that = and y are two
vectors in S NT. Then, by definition, we have x, y € S and x, y € T. Since S
is a subspace it follows that x 4+ y € S, and similarly z + y € T since T is a
subspace. Therefore x + y belongs to both S and T, so x +y € SNT. Hence
S NT is closed under vector addition.

Your turn: Prove that S N T is closed under scalar multiplication. Once
you’ve done this, it follows that SN T is a subspace. <

We can generalize Lemma 3.25 to more than one subspace. A first step
is to use induction to extend from the intersection of two subspaces to the
intersection of any finite number of subspaces.
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Exercise 3.26. Show that if Sq,...,S,, are subspaces of a vector space V,
then S1N---NS, is a subspace of V.

However, we can do better than this. Using an argument very similar to
the proof of Lemma 3.25 but using “for all” instead of “z and y”, you can
give a direct proof that the intersection of any collection of subspaces is a
subspace, even if there are infinitely many that we want to intersect. Here’s
the exercise.

Exercise 3.27. Let V be a vector space. Suppose that I is some set (we call
it an index set), and for each i € I we have a subspace S; of V. Show that

NS = {x:xESiforeveryiEI}
el

is a subspace of V. <

The set I in the preceding exercise can be anything. If I = {1,...,n},
then

ﬂSiZ S; = SiNSynN---NS,.
=1

el i=

IfI=N=1{1,2,3,...}, then

ﬂSi = nSz =5 NSnNSy3n---.
el i=1

If I = R then we have one subspace S; for each real number 4, and

nNs: = NS = {ac :x € S; for every real number z}
el i€ER

3.6.4 Spans, Part I

Apostol is a bit skimpy on his discussion of spans in Chapter 3, so it would
be good for you to look back at Section 1.12 of his text, where he talks about
the span of a set of vectors in R™. We'll be considering spans in abstract
vector spaces, not just R™, but the definitions and ideas are very similar.

The idea of a span is that we have some vectors, and we want to create
a subspace that contains those vectors. For example, suppose that we have a
single vector x in a vector space V. If z is the zero vector, then the set that
contains z is {0}, which is a subspace of V. However, it’s not a very interesting
subspace, so let’s consider what happens if x # 0. In this case the set that
contains just x (in other words, the set {z}) isn’t a subspace. (Why not? Can
you prove that {z} isn’t a subspace when z # 07)

Can we find a nice subspace that contains the vector 7 We could take the
entire space V—this is a subspace and it contains everything, including x. But
this is overkill, can we do better? Can we make a subspace S that contains x

(©2011 Christopher Heil
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but not too much other stuff? It will have to contain something more than
just x since {z} by itself isn’t a subspace, but what else do we really need?
We don’t really know how to make S yet, but let’s think about what vectors
we would need. The issue is: what do subspaces look like?

The key to this is Theorem 3.14. That theorem told us that in order for a
set S to be a subspace, it has to be closed under vector addition and scalar
multiplication. Let’s think about closure under vector addition first. If S is a
subspace and z is in S, then x and x are two vectors in S, so closure under
vector addition tells us that = + = has to be in S. This vector x + x is the
same as the vector 2x, so at the very least we have to have 2x € S. Applying
closure under vector addition again, we must have 3x = 2x +x € S. So, every
integer multiple of x has to be in S. Is this enough—can we get away with
just the integer multiples and nothing else?

Exercise 3.28. Let x be a nonzero vector in a vector space V.

(a) Let S be the set of all positive integer multiples of z, i.e.,
S = {z,2z,3z,...} = {nx:neN}

Prove that this set S is not a subspace of V.

(b) Maybe we need all of the integer multiples, both positive and negative.
Let S be the set of all integer multiples of z, i.e.,

S ={.,-2z,—20zx2x,...} = {nx:necZ}
Prove that this set S is not a subspace of V.

If we want to make a set S that contains x and is a subspace, we have to
have more in S than just the integer multiples of . We determined above that
the integer multiples of  do have to be in S in order for closure under vector
addition to hold, but that’s just not enough by itself to make a subspace. We
also have to satisfy closure under scalar multiplication, and that requires that
we have every real multiple of x in the set. Is this enough? Yes. Well, you need
to prove that, hence the next exercise.

Exercise 3.29. Let « be a nonzero vector in a vector space V. Let S be the
set of all real multiples of z, i.e.,

S = {cx:ceR}.
Prove that S is a subspace, and x belongs to S.
What does the subspace S in Exercise 3.29 “look like”?

Example 3.30. (a) Suppose that z is a nonzero vector in R?, say x = (71, z2).
Then the set S given in Exercise 3.29 is
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s twreery - fo[m]ieen) < [ cenl.

We just take the vector x and stretch it by all possible scalars. We get the
set of all scalar multiples of x, and this is precisely the line in R? that passes
through the origin 0 and the vector x.

(b) If x is a nonzero vector in R3, then S = {cx : ¢ € R} is again the set
of all scalar multiples of . This is just the line in R? that passes through the
origin and z.

If x € R™ is nonzero, then we can again visualize S = {cz : ¢ € R} as
a line in R™ that passes through the origin (and through the vector x). We
adopt this terminology for use in any vector space, as follows.

Notation 3.31. If = is a nonzero vector in a vector space V, then we call
S = {cx:ceR}

the line though x. (It would be more precise to say that it is the line through x
and the origin, but we usually understand from context that we’re talking
about subspaces, and any subspace has to contain the origin.)

As we will explain later, we also call S the span of the set {z}, and we will
write

S = span{z} = span{z} = {czx:c€ R}.

When we’re dealing with a single nonzero vector, the span of {z} is the line
through the vector z. We’ll see that things are more complicated when we
want to compute the span of a set that has more than one vector.

Note that if = 0 then span{z} isn’t a “line,” it’s just the set that contains
the zero vector:

x =0 = span{0} = {c0:ce R} = {0}.

This set is still the span of a single vector (the zero vector), but since every
scalar multiple of the zero vector is 0, the span is just {0}. ¢

To illustrate the meaning of a “line” in an abstract vector space, let f be
the function whose rule is f(z) = sinz. Forget the fact that f is a function,
and think of f as being a dot in the space C'(R) of all continuous functions.
The zero function 0 is another dot in this space C'(R). Think of 2f as being
the dot that is in the same direction as f except twice as far out, and so forth.
Then the set of all scalar multiples of f is a line in C(R). That is, the line in
C(R) through the function f is

S = {ef:ceR}.

We're not saying that the graph of f is a line. We’re saying that we start with
a single vector f in C'(R), and we make a set that consists of all of the scalar
multiples of f. This set of all scalar multiples of f is a set of functions, and
it is what we call the line through f in the space C(R), or the span of {f}.
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Exercise 3.32. (a) Let f be the function whose rule is f(x) = sinx, and let g
be defined by g(x) = cosz. Does g lie on the line through f? That is, is it
true that g € span{f}? Be sure to give a careful proof of your answer.

(b) Same question for f(x) =z and g(z) = 22. Is g € span{f}?

(¢) With f and g as in part (b), explicitly describe the line through f, and
likewise describe the line through g. That is, tell me exactly what functions
are on these two lines. <

3.6.5 Spans, Part II

Now suppose that we have two nonzero vectors x, y in a vector space V,
and we want to find a subspace that contains both x and y. Again, the entire
space V is certainly one subspace that contains x and y, but I'd rather try to
find just those vectors that we “really need” in order to make a subspace S
that contains x and y.

Let’s try to work backwards a little, like we did when we had just one
vector to worry about. If S is a subspace and x, y are in S, what other vectors
must be in S? Since S has to be closed under scalar multiplication, we at
least have to have all scalar multiples of  and y in S, as otherwise it couldn’t
possibly be closed under scalar multiples. Can we get away with just these
vectors? In other words, if we take S to be

S =A{cx:ceR} U{cy:ceR}, (3.3)
will S be a subspace? Tell me what you think of the following argument.

Argument. T will try to show that the set S given in equation (3.3) is
not a subspace. In order for S to be a subspace, it has to be closed
under vector addition as well as scalar multiplication. Therefore, if x
and y are in a subspace S then x 4 y has to belong to S as well. But
the vectors in S are cx and cy where ¢ € R, so x + y isn’t one of the
vectors in S. Therefore S is not a subspace.

What do you think? This almost seems to work. After all, the elements of
the set S given in equation (3.3) have the form cx or cy where ¢ is a scalar.
This doesn’t look like x + y—but are you sure that x + y couldn’t be equal
to cx or cy for some ¢? It’s not enough to just say that x 4 y is written with
different symbols than cz. If we really think that x + y is different than cx
or cy then we have to prove this statement. And there’s a big problem here,
because IT’S NOT TRUE that we have to have x +y # cx and z + y # cy
for any scalar c. It all depends on what the vectors x and y are. Here’s an
example where x + y does equal cx for some scalar c.

(©2011 Christopher Heil
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Ezample 3.33. When you’re looking for examples, it’s always good to keep
things simple. Let’s consider the vector space R?, and let’s take x = (1,0)
and y = (2,0). Writing vertically, this is

[ el

For this choice of vectors, we have

cor- B - -

So it is possible that = 4+ y can be a scalar multiple of x.

Exercise: You should explicitly work out what the set S given in equation
(3.3) looks like. You should be able to show that, for this choice of = and y,
the set

S ={cx:ceR} U {cy:ceR}

is precisely the same as the set
S = {dx:deR}.
Hence this set S is simply the line through =z, i.e.,
S = span{z}. O

Here’s a different example where the vector z 4 y is not equal to cz or cy
no matter what scalar ¢ that we choose.

Ezample 3.34. This time let

[ el
A |

No matter what scalar ¢ that we choose, we have x + y # cx and = + y # cy.
Therefore, for this choice of z and y, the set

S ={cx:ceR} U {cy:ceR}

is not closed under vector addition and therefore isn’t a subspace of R2.

Think about exactly what the set S is—it is the union of the z-axis and
the y-axis in R2. This set is closed under scalar multiplication, but it isn’t
closed under vector addition. <
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So, when we have two vectors = and y, we run into different possibilities
depending on how these vectors are related to each other. Can you see the
difference between the two preceding examples? In Example 3.33, the vector y
was a scalar multiple of the vector x, while in Example 3.34 the vector y is
not a scalar multiple of x. This is related to the issue of whether z and y are
linearly independent—we will spend a lot of time considering that question
later. Linear independence is an easy question when you only have two vectors,
because it just comes down to the question of whether one vector is a scalar
multiple of the other. But linear independence is a much trickier issue when
you have more than two vectors! We will study this in detail later.

To summarize where we are, we’ve seen that if we have two vectors x and y
in a vector space V, and we want to create a subspace S that contains both x
and y, it’s not always enough to take the union of the scalar multiples of x
and the scalar multiples of y. This gives you the union of two lines in V| but
that won’t always be a subspace. It is a subspace if the two lines are identical,
but it isn’t if the two lines aren’t identical. (When are the two lines identical?
This does not require that x and y be equal—see Example 3.33!)

In order to be sure that we have a subspace, we need to combine both
vector addition and scalar multiplication. We need all the scalar multiples
of x, all the scalar multiples of y, and we also need all the possible sums of
such vectors. Is that enough to make a subspace? Let’s check.

Theorem 3.35. If x and y are any two vectors in a vector space V, then
S = {az+by:a,beR} (3.4)
s a subspace of V, and x, y belong to S.

Proof. We have to show that S is nonempty, S is closed under vector addition,
S is closed under scalar multiplication, and S contains both = and .
The fact that S contains x and y is easy, because

x = le+4+0y € 5, y =0x+1lyes.

This also tells us that S is nonempty. We could also prove that by showing
that S contains the zero vector. This follows because we have

0 =0x+0y € S.

Now we will show that S is closed under vector addition. To do this, we
have to prove that if we choose any two vectors in S, then their sum stays
in S. We need to be careful about notation, because the letters x and y are
already used for something. So, let’s use different letters for the two vectors
in S.

Let p and ¢ be any two vectors in S. Because p belongs to S, we must have

p = ar+ by for some scalars a,b € R.
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Similarly, since ¢ € S we have
q = cr+dy for some scalars ¢,d € R.

Since vector addition is both commutative and associative and the distributive
rules are satisfied, it follows that

p+q = (ax +by) + (cx + dy)
= (az + cx) + (by + dy)
= (a+c)z+ (b+d)y.

You should check that we really had to use commutativity, associativity, and
the distributive law to do the computations on the preceding lines! Let’s choose
some names. Let r = a 4+ ¢ and s = b+ d. These are just two scalars, so we
have

p+q = re+sy € S.

The set S contains every scalar multiple of x plus every scalar multiple of y,
and rx + sy is precisely one of these, so it belongs to S. This shows that the
set S is closed under vector addition.

Exercise: Prove that S is closed under scalar multiplication. Once that is
done, the proof is complete—we’ve shown that S is a subspace of V. O

Exercise 3.36. In equation (3.4) we took all of the possible scalar multiples
of x plus scalar multiples of y, and we were careful to let the scalar that
multiplies x be different from the scalar that multiplies y. Could we have
gotten away with using the same scalar on both = and y? In other words, if
we let S be the set

S = {cw+cy:c€R},

will it be true that S must be a subspace? Well, in fact it is—but the problem
is that S might not contain either x or y. Here’s what you need to do.

(a) Prove that S = {cz 4+ cy : c € R} is a subspace of V.

(b) Give a specific example of V, z, and y such that the vector x + y does
not belong to S. (Keep it simple—try V =R2) ¢

Now you need to do some examples.

Exercise 3.37. This exercise takes place in the vector space V = R2. For the
vectors x, y given below, find an explicit description of the set

S = {az+by:a,b€R}.

That is, tell me exactly which vectors are in S. I especially want to know
whether S is all of R? or is just a part of R2.

(a) £ = (1,0) and y = (0,1).
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(b) = (1,0) and y = (2,0).

(c) z = (1,0) and y = (0,0).

(d) z = (0,0) and y = (0,0)
(

You should be able to prove that the set S that you find in part (a) is the
same as the one in part (e), and the one in parts (b) and (c¢) are likewise equal.

Don’t just tell me that S is the set of all vectors ax + by where a, b are
in R. T want to be able to explicitly see which vectors are in S. For example,
in part (e) you should prove that S = R?, i.e., every vector is in S. I can’t
see that by looking at the formula S = {am +by:a,be R}. For part (e) you
have to prove that the set S and the set R? are equal. How do you prove that
two sets are equal?

Now we will introduce some notation for the things that we’ve done. We
keep running into vectors of the form ax + by over and over, so we’ll give these
kinds of vectors a name.

Definition 3.38. A linear combination of two vectors x, y € V is any vector
that has the form

ax + by where a,b € R. &

So, if you have a vector z and you can show that z = ax + by for some
scalars a and b, then we say that z is linear combination of x and y. It may or
may not be easy to see whether z is a linear combination of z and y. Usually
you can’t just look at z and tell. If you start with x and y then it’s easy to
make linear combinations, you just multiply « by some number a, multiply y
by b, and add the results together to get ax + by. But if I just give you some
vector z and ask is z a linear combination of x and y, then you’ve got work to
do, because you have to find out if there are some scalars a and b that satisfy
z = ax + by.

Exercise 3.39. (a) Show that every vector z € R? is a linear combination of
the vectors = (1,0) and y = (0, 1).

(b) Show that every vector z € R? is a linear combination of the vectors
z=(1,0) and y = (1,1).

(c) Show that there are vectors in R? that are not linear combinations of
z=(1,5) and y = (2,10). &

Exercise 3.40. Let f and g be the functions whose rules are
flx)=1, r €R,

and
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g(z) =z, z € R.

These functions f and g are vectors in the vector space F(R). A linear com-
bination of f and g is any function h that can be written as h = af + bg for
some scalars a, b € R.

(a) Let h be the function whose rule is h(x) = 3z 4+ 2, € R. Prove that
h is a linear combination of f and g.

(b) Let k be the function whose rule is k(z) = sinz. Prove (carefully!)
that k is not a linear combination of f and g. <

Look back at the set S = {azx + by : a,b € R} that we defined in equation
(3.4). Using the terminology of linear combinations, S is simply the set of all
possible linear combinations of x and y. We have a special name for this set.

Definition 3.41. Let x and y be two vectors in V. The span of the set {z,y}
is the set of all possible linear combinations of  and y. We write this as
follows:

span({z,y}) = {az+by:a,be R}.
Sometimes we just say that span({x,y}) is the span of  and y, but a more

precise description is that it is the span of the two-element set {x, y}. To avoid
writing lots of parentheses, we often write

span{z,y} instead of  span({x,y}).

In any case, the span of x and y is the set of all possible linear combinations
ofzandy. <

Exercise 3.42. Find an explicit description of span{z, y} for each of the pairs
of vectors given in Exercise 3.37.

Hint: You already did the work when you worked out that exercise. This
exercise is asking for exactly the same thing—it just formulates the question
in a different terminology. <

Exercise 3.43. Let f and g be the functions whose rules are f(x) = 1 and

g(z) = z for every z.

(a) Prove that
Spa‘n{f7g} = Plv

where P is the set of all polynomials with degree at most 1 that we introduced
in Exercise 3.21.

(b) Let h be defined by h(x) = z?. Find an explicit description of
span{f, h} and span{g, h}. Does either of these sets equal P27

Exercise 3.44. Challenge problem: Prove that no matter which two functions
f and g that we choose, we can NEVER have

span{f,g} = F(R). <
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The preceding exercise says that no matter what two vectors f and g that
we choose, F(R) is not equal to the span of f and g. In contrast, another
vector space that we often work with, namely R? can be written as the span
of two vectors. Does R? equal the span of two vectors? That is, do there exist
vectors z, y € R3 such that

R?® = span{z,y}?

Can you prove your answer?

3.6.6 Spans, Part III

You can probably guess what’s coming next: We want to form linear com-
binations of three, four, or more vectors. Here’s what we mean by a linear
combination of n vectors.

Definition 3.45 (Linear Combination). Let z1,...,z, be n vectors in a
vector space V. A linear combination of x1,...,x, is any vector of the form

n
c1x1+ -+ ey = E Ck T
k=1

where ¢1,...,¢, € R, O

Given vectors z1,...,x, it’s easy to make a linear combination—you just
multiply each xj by some scalar c; and add the results together. In general,
the converse question is much harder, i.e., if I just give you some vector z
and ask you whether it is a linear combination of z1,...,z, then you have
to do some work to figure out whether there are scalars ¢y, ..., c, such that
z = c1x1 + -+ + ¢pxy,. Back when you took MATH 1502, you learned how
to do this for vectors that are in the vector space R™. You have to set up a
system of linear equations and see if it has a solution. Since this was taught
in 1502, I'm going to assume that you remember how to do this!

We define the span of a set of vectors to be the set of all possible linear
combinations of those vectors. Here’s the precise definition.

Definition 3.46 (Span). Let z1,...,2, be n vectors in a vector space V.
The span of the set {z1,...,2,} (or simply the span of x1,...,z, for short),
is the set of all possible linear combinations of these vectors. We call this set
span({z1,...,2,}) or simply span{xzy,...,x,}. It is given by the following
formula:

span{xi,...,xp} = {clx1—|—-~-cnxn:cl,...,cn ER}

n
{chxk:cl,...,cneR}. &
k=1

(©2011 Christopher Heil
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The case where we have n = 1 in Definition 3.46 can be a little confusing. In
this case the sums in the definition only have one term. That is, Definition 3.46
says that the span of a single vector z; is

span{z;} = {clxl iep € R}.

When we only have a single vector, we usually dispense with subscripts and
just write the vector as x instead of z1, and similarly we let ¢ denote a generic
scalar instead of using c;. Using the choices of letters, the span of the single
vector x is

span{z} = {cz:ceR}.

If = is nonzero then this is precisely the line through x. On the other hand,
if x is zero then we have

span{0} = {c0:ce R} = {0}.

We proved in Theorem 3.35 that the span of two vectors is a subspace.
The proof that the span of n vectors is a subspace is very similar, so I assign
it to you to do as the next exercise.

Exercise 3.47. Given finitely many vectors z1,...,z, in a vector space V,
prove that span{z1,...,z,} is a subspace of V. {

One thing we are very interested in is whether the span of our vectors is
the entire space V' or not. Here is some terminology for that.

Definition 3.48. Let x4, ..., x, be n vectors in a vector space V. We say that
Z1,...,Ty span the space V if we have

span{xy,...,xn} = V.
If this doesn’t happen then z1,...,z, do not span V. &

Here are some exercises about vectors in R™. We need to be a little careful,
because we’re tempted to use the same letter n for the number of vectors as
for the dimension of R", but there’s no reason that these need to be the same.
So I'll use the letter d for the dimension instead, i.e., we will be working in
the vector space RY.

Exercise 3.49. (a) Find two vectors x1, ¥o in R? that span R?. Find two
different vectors y1, yo in R? that also span R?. Find three vectors 21, 22, 23
that span R?2. Show that there is no single vector that spans RZ, i.e., no
matter what vector z € R? that we choose, we never have

R? = span{z}.

Be sure to prove this carefully.
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(b) Find (explicitly) d vectors x1,...,z4 that span R Given an explicit

example of d vectors yi,...,yq that do not span R%. Can you find vectors
21,...,%q whose span is a line in R%?
(c) Let
1 1 1
0 1 1
3312071‘2207 xd:l
0 0 1
Do the vectors z1, ..., zq span R%?

(d) Challenge (hard!): Show that if x1,...,24—1 are any choice of d — 1
vectors in R4, then

Rd # spa‘n{xlr"azd—l}' <>

Here is an exercise about functions. Recall from Exercise 3.21 that P,
stands for the set of all polynomials that have degree at most n, while P
stands for the set of all polynomials of any degree. Also remember that a
polynomial is a function that has the form

f(z) = chxk (3.5)
k=0

for some finite integer n and some scalars cg, ¢, . .., c,. If ¢, # 0 then we say
that f has degree n. By definition, the series in equation (3.5) is a finite sum,
i.e., there can only be finitely many terms. Polynomials are not defined using
infinite sums.

Exercise 3.50. Let pg, p1,po,... be the functions whose rules are

po(@) =1, pi(z) =2,  pa(z) =27

That is, py, is the function whose rule is pi(z) = 2*, z € R.

(a) Prove that
Span{p07p1a cee 7pn}' = P’n

(b) Find three functions qo, g1, g2 different from pg, p1, p2 but such that

span{qo, q1,q2} = Po.

Note that according to part (a) we also have span{po,p1,p2} = Po.

(¢) Find four functions ry,7q, 73,74 that span Ps.
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(d) Prove that if f1,..., f,, are finitely many polynomials, then

span{fi,..., fm} # P.

This part is tricky because you don’t know what f1,..., f,, are. In particular,
you don’t know that f; has degree k. The only thing that you know is that
each function f is a polynomial. The polynomial fj has some degree, but you
don’t know what it is. Also, m can be any finite number. It can only be one
particular finite number, but you don’t know what it is. In particular, you
can’t say “let m = 00”, because that’s not a number. <

3.6.7 Spans, Part IV

You may have thought that we’ve covered all the possibilities for a span—
we’ve done the span of one vector, two vectors, and finally n vectors. But
there are more situations to consider.

First, what if we have infinitely many vectors? Does it make sense to define
the span of a set of infinitely many vectors? We must be very careful here,
because whatever definition we make has to apply to generic vector spaces,
not just to R%.

You might be tempted to think that if we have infinitely many vectors
r1,Ts,..., then we can define a linear combination of these vectors to be a
vector that has the form

o0
C1X1 + Coxo + -+ = E [
k=1

However, there are a number of problems with this. The first problem is what
we mean by an infinite series when we’re dealing with vectors in a generic
vector space. We won’t get into this too much, but you should remember
from MATH 1502 that if we're talking about real numbers, then an infinite
series really means a limit of the partial sums. That is, if a;, € R then we say
that

o0
Z ar = L (the infinite series converges and equals L)
k=1

if and only if the partial sums of the series converge to L, i.e.,

N
lim ];ak = ]\;iirlm(a1+~~~+aN) = L.

N—o0

But in order to define what a limit is, we have to be able to talk about the
distance between numbers. The partial sums have a limit if they get “closer
and closer” to L. However, distance and “closer and closer” are statements
about numbers—there’s no part of the definition of a vector space that says
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we have to be able to define a distance between vectors. We might be able to,
but often we can’t. If distance has no meaning in our particular vector space
then we can’t talk about limits and therefore infinite sums have no meaning.
As long as we’re talking about generic vector spaces, we have to exclude any
discussion of infinite sums, because they don’t always make sense. In some
vector spaces it does make sense, and in fact those are the types of vector
spaces that I usually work in myself. We’ll come back to those types of spaces
later (we call them normed vector spaces), but for now we must restrict our
discussion to finite sums.

So, even if we have infinitely many vectors, when we form a linear combi-
nation we’re only allowed to use finitely many of them at a time.

Exercise 3.51. Suppose that x1, xs, ... are infinitely many vectors in a vector
space V. Suppose that we choose just finitely many of these, say

Tnys Tngs « -y Ty -
A linear combination of these vectors is any vector of the form
y = cnlmnl + chxng + e + cnkxnk7

where ¢, ,...,cy, are scalars. Prove that we can find some integer N and
some scalars ¢ such that

N
Yy = g CkTp = C1X1 + -+ CNTN.
k=1

Hint: Start with an example. What would you do if you had k = 3 and n; = 5,
Ng = 11, ng = 977 <>

We define the span of infinitely many vectors to be the set of all possible
linear combinations of finitely many of those vectors at a time. If our vectors
are xi,s,..., then the preceding exercise shows us that any linear combi-
nation of finitely many of these vectors can be written as cyxy + -+ cyzy
for some N and scalars ¢y, ...,cn (note that some of the ¢, might be zero!).
Taking all of these possible linear combinations gives us the span of 1, zs,. ...

Definition 3.52. If z1,zs,... are vectors in a vector space V, then the span
of these vectors is the set of all possible linear combinations of finitely many
of them. We write this as

N
span{zy, za,...} = {chxk:NeN, Cly...,CN ER}.
k=1

Note that there’s no limit on how big the number N can be, although for each
particular linear combination the series > ,_; cxpx) has only finitely many
terms. We can have N =1, N = 100, N = 109 and so forth, but it is finite.
There are no infinite sums in our definition of span.
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Exercise 3.53. Let po, p1,p2,... be the polynomials defined by py(z) = =¥

for x € R. Prove that
span{po,p1,...} = P.

What is
span{pi,p2,...}7 &

There are infinite sets that cannot be listed. However, the span of such a
set is defined in the same way, it is the set of all possible linear combinations
of finitely many of the vectors in the set. We won’t have to worry too much
about this type of situation so I won’t get into more detail about it now.

On the other hand, there is another extreme case that we do have to worry
about. What if we have a set of NO vectors, i.e., we have the empty set. What
is the span of the empty set? This is one of those questions that doesn’t have
a completely satisfying answer. You might think that span()) should be the
empty set, because it’s the set of all linear combinations of vectors in @), and
there aren’t any vectors in () so there are any linear combinations. This is a
perfectly valid point of view, but for reasons that we’ll see later it turns to
not be the best definition of span(f)). So for now you’ll just have to believe
me, the following definition is better.

Definition 3.54 (Span of the Empty Set). We declare that the span of
the empty set is
span(f) = {0}.

That is, the span of the empty set is the set that contains the zero vector but
no other vectors. <

Here’s one reason why this is better than saying that span(f)) is the empty
set. In every case that we did before, the span turned out to be a subspace
of V. In some sense, the span of xz1,...,x, is the “smallest” subspace that we
can make that contains the vectors x1, ..., z,. If we decided to make span((})
be the empty set, then it wouldn’t be a subspace. On the other hand, if we
set span(()) = {0}, then it is a subspace, and in fact it is the very smallest
subspace that we can make that contains the empty set. So if we think of
a span in terms of “smallest subspace” instead of linear combinations, then
Definition 3.54 may make sense.

Here’s an exercise that may make this idea of “smallest subspace” a little
more palatable. I'll state this for the case of finitely many vectors, but the
same idea works for the span of infinitely many vectors.

Exercise 3.55. Let z1,...,z, be finitely many vectors in a vector space V.
Let S be the span of z1,...,z,, ie.,

n
S = span{zy,...,x,} = {chxk:cl,...,CHGR}.

k=1
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According to an earlier exercise, the set S is a subspace, and it contains each
of the vectors zy,...,z, (if you didn’t prove that before, you should do it
now).

There are other subspaces that contain the vectors z1, ..., z,. For example,
the entire space V is a subspace that contains x1,...,x,. Our goal in this
exercise is to show that the space S is somehow the “smallest” among all of
these subspaces. To do this, let T" be any one of these subspaces. That is,
suppose that:

(a) T is a subspace of V' AND
(b) z1,...,zn, €T.

Prove that S is smaller than 7" in the sense that we must have
S C T.

Thus, no matter which subspace T that we choose, if T' contains the vectors
Z1,-..,T, then the subspace S is sitting inside 7.

3.7 Dependent and Independent Sets

In the last section, we defined the span of a set of vectors to be the set of
all possible linear combinations of these vectors. In particular, the span of a
fixed set of finitely many vectors S = {z1,...,2,} is

n
span(S) = span{zi,...,z,} = {chxk:cl,...,cn ER}.
k=1

If we have a set S that contains infinitely many vectors, then the span of S
is still the set of all linear combinations of elements of S, but we have to
remember that any particular linear combination is a sum of finitely many of
the elements of S. In particular, if we can write S = {z1,22,...} then the
span of S is

n
span{xi,za,...} = {chxk :n>0,¢1,...,¢, € R}.
k=1

When we form the span of a set of infinitely many vectors, we include linear
combinations of x1, . .., x, for every possible value of n. We might form a linear
combination of a hundred, a million, or a billion vectors, but each individual
linear combination is a sum of finitely many of the infinitely many vectors
in S. However we write it, the span of a set of vectors S is the set of all linear
combinations of elements of S.

Before proceeding, I should mention that Apostol uses a somewhat un-
common notation to denote a span. Instead of writing span(S), he prefers
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to write L(S). The letter L stands for “linear” and reminds us that this is
the linear span, which is the set of all linear combination of vectors from S.
I prefer to write span(S), but please keep in mind when you read the text
that these notations mean exactly the same thing:

L(S) = span(S).

3.7.1 The Definition of Independence

One of the things we were interested in Section 3.6 was whether the span
of a set of vectors was the entire vector space. We said that a set S spans the
space V if the span of S is all of V. That is,

Sspans V. <= span(S) = V.

What we’re interested in now is whether there are any duplicates in these
linear combinations. By definition, the span of S = {z1,...,z,} is

n
span(S) = span{zi,...,z,} = {chxk:cl,...,cn ER},
k=1

but are all of those linear combinations different, or could some of them be
the same? Before addressing this question, we need the following terminology.

Notation 3.56. Let z1,...,x, be finitely many vectors in V. We said before
that a linear combination of these vectors is any vector that can be written
as

n
E CLTE = C1T1+ -+ Ty for some scalars ¢q,...,c, € R.
k=1

Now we introduce a new term. We will say that Y ;_, cyxy is a nontrivial
linear combination if c1,...,c, are not all zero. <

For example, x1 + 222 —5x3 is a nontrivial linear combination of x1, x2, x3,
but 0z; + 0zo + Oz3 is a trivial linear combination of x1,x9, x3. Naturally,
the trivial linear combination of z1,...,z, equals the zero vector, but you
should ask yourself whether it is possible for a nontrivial linear combination
of x1,...,x, to equal the zero vector. (Yes, it’s possible—give an example!)

We want to know if all of the linear combinations of x1,...,x, are differ-
ent, or if there could be some duplications. Because we are working with linear
combinations, the question of whether there are duplicates can be reformu-
lated as a question about the nontrivial linear combinations of the vectors, as
follows.
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Lemma 3.57. Let x1,...,x, be finitely many vectors in V. Then

chﬂjk = del‘k <~ Z(Ck*dk)xk = 0. (36)
k=1 k=1

- k=1
Therefore, the following two statements are equivalent.
(a) Two different linear combinations of x1, ...z, are equal.

(b) Some nontrivial linear combination of x1,...,x, equals 0.

Proof. Equation (3.6) is easy to prove (you should do it—be sure that you
prove the if and only if statement in that equation!). Therefore, let’s con-
centrate on proving that statement (a) is true if and only if statement (b) is
true.

(a) = (b). Suppose that two different linear combinations of x1,...,x,
are equal. This means that we have

n n
E CLTE = E drxy,
k=1 k=1

for some scalars ¢ and dj, and furthermore these are not the same linear
combination. Not being the same linear combination does NOT mean that
¢ # dy for every k! For example,

2x1 — 3x2 + bxs and 2x1 — 4xo + Sx3

are two different linear combinations of 1, 2, x3 yet we do not have ¢y # dy,
for every k. Instead, the assumption that ZZ:1 crxy and 22:1 dix are dif-
ferent linear combinations just means that there is at least one index j such
that Cj 7é dj.

However, even though Y"7'_, ¢y and Y, _, djay, are different linear com-
binations, our hypothesis is that they give us the same vector. That is, we are
assuming that >, _, ckrr = > p_; dipxy. Consequently (why?), we have

Z(Ckfdk)zlik = 0

k=1
We might have ¢, = dy, for some indices k, but we know that for the particular
index j we have ¢; # d;. Therefore, for the index j we have ¢; —d; # 0. Hence
Sy (ck —di)zy is a nontrivial linear combination of x4, ..., z,. Yet we know
that >, _;(cx — di)zr, = 0, so we have a nontrivial linear combination that
equals 0.

(b) = (a). Suppose that some nontrivial linear combination of z1, ...,z
equals the zero vector. That is, there are some scalars ci,...,c, not all zero
such that 22:1 cpxr = 0. Then we have
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k=1 k=1

Since it’s not true that ¢y = 0 for every k, the two linear combinations
Son_ickry and Y p_, Oxzy are different linear combinations. Hence we have
shown that there are two different linear combinations of x1,...,x, that are
equal. O

In summary, there are no duplicates in the set of linear combinations if and
only if there is no nontrivial linear combination that equals the zero vector.
We have a special name for this situation.

Definition 3.58 (Linear Independence). Let z1,...,x, be finitely many
vectors in V.

(a) We say that {x1,...,2,} is a linearly independent set of vectors if there
is no nontrivial linear combination that equals the zero vector.

Writing this definition in contrapositive form, {z1,...,2,} is linearly in-
dependent if the only linear combination that equals the zero vector is the
trivial combination. This is usually the best form to work with. In symbols,
{z1,...,z,} is linearly independent if

n
chxk:() = ¢ = =2c¢ = 0.
k=1

We use several different abbreviations for independence. For example, we
might say that xz1,...,xz, are linearly independent or we might just write
that z1,...,z, are independent.

(b) We say that {x1,...,2,} is a linearly dependent set of vectors if it

is not linearly independent. Hence x1,...,z, are linearly dependent if and
only if there is at least one nontrivial linear combination that equals the zero
vector. In other words, z1,...,z, are dependent if

chxk = 0 for some ¢ that are NOT ALL ZERO. O

k=1
Thus, z1,...,, are linearly independent if and only if each linear combi-
nation of x1,...,x, gives us a unique vector. Another way to say this is that
if x1,...,x, are linearly independent, then when we look at their span, which

1S

n
span{xy,..., T} = {chxk 1C1, ..., Cp € R},
k=1

there are no duplicates in the linear combinations that make this span. The
span is the set of all linear combinations, and our vectors are independent if
there are no duplications among this linear combinations.
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Note that we always have 0zy + - - - + Ox,, = 0. This does NOT say that
x1i,...,T, are dependent. In order to be dependent there must be a nontrivial
linear combination that equals the zero vector.

If you want to prove that x1,...,z, are independent, then what you need
to prove is this implication:

n
chxk:0 == ¢ = - =c¢c, = 0.
k=1

To do this, you suppose that you have some scalars ¢ such that ZZ=1 CLTE =
0, and then you must show that each c¢; must be zero.
Here is a good exercise to start with.

Exercise 3.59. Let f and g be the functions whose rules are f(z) = sinz
and g(x) = cosx. These are vectors in the space F(R). Determine whether
{f, g} is an independent or a dependent set of vectors.

To solve this problem, you have to determine whether there is some non-
trivial linear combination of f and g that equals the zero vector. If you believe
that f and g are independent, then you have to show that there are no scalars
a, b € R with a, b not both zero such that af + bg = 0 (the zero function).
If you believe that {f, g} is dependent, then you have to prove that there are
scalars a, b that are not both zero but such that af 4+ bg = 0.

Let’s suppose that you believe that f, g are independent. Then you begin
your proof with “Suppose that af + bg = 0 for some scalars a, b”. Then you
use this information. By definition, the assumption af + bg equals the zero
function means that these two functions have the same rule, i.e., (af +bg)(x)
and 0(z) are equal for every x. Plugging in the definitions of f, g, and the
zero function, it follows that for every x € R we have

asinz +bcosz = af(x)+ bg(x)
= (af +bg)(x)

Now you have to prove, somehow, that a and b must be zero. You could try
choosing some specific values of z; you can do this because you know that
asinx 4+ bcosx = 0 for every x, so if you look at any particular value of x
then you will have a sin x+bcosx = 0. For example, you could try a point like
z = 0. Or you can use any other tools that apply to functions—you could try
to differentiate, or take limits, or do something else. Each problem is different,
you have to find the tool that will work for your problem. <

Here are some exercises about important special cases of vectors that are
independent or dependent.
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Exercise 3.60. (a) Suppose that S = {z1,...,2,} includes the zero vector,
i.e., there is at least one j such that z; = 0. Show that S is dependent.

(b) In this part we consider sets that contain only a single vector. Let = be
a vector in V. Show that if x = 0 then S = {z} = {0} is a linearly dependent
set, Show that if x # 0 then S = {z} is a linearly independent set.

(¢) Now we consider sets of two vectors. Let « and y be two vectors in V/
(they can be any two vectors, they might even be equal). Show that S = {z, y}
is a linearly dependent set if and only if one of these vectors is a scalar multiple
of the other. That is, you must prove that

{z,y} is dependent <=  x = cy or y = cx for some scalar ¢ € R.

Is it true that {z,y} is dependent if and only if 2 = cy for some scalar ¢? (No,
it’s not true. Why not? Always worry about special cases!)

(d) In part (a) you showed that a set that contains the zero vector is
linearly dependent. Prove that the converse of part (a) is FALSE. That is,
give an example of a set of vectors that is dependent even though every vector
in the set is nonzero.

(e) Give a concrete example of three nonzero vectors z, y, z such that
{z,y, 2z} is dependent and no two of z, y, z are equal. (Choose your favorite
vector space V for this example.)

(f) In part (c) you showed that a set of two vectors is dependent if and
only if one of the vectors is a scalar multiple of the others. Show that the
analogous statement for three vectors is FALSE. More specifically, prove that
one direction of the implication is still valid for three vectors but the other
direction is not. Even more specifically, this means that you should show that
if any one of z, y, z is a scalar multiple of one of the other two, then {z,y, 2} is
dependent, BUT there exist examples of dependent sets {z,y, z} where none
of the three vectors is a scalar multiple of the others. <

Here are some exercises related to independence and span of subsets and
supersets.

Exercise 3.61. (a) Suppose 1, ..., x, are linearly independent vectors in V.
Show that if 1 < k < n, then 1, ..., 2, are independent.

(b) Is it true that if z4,...,z, are linearly independent vectors in V' and
we choose more vectors x,41,...,2, then z1,..., 2y, Tp41,...,T; must be

linearly independent? Either prove that this is true or give a counterexample.

(c) Suppose that vectors z1,...,z, span V. Show that if we choose more
vectors Tp41,...,Tx € V then 21, ..., 2y, Zpy1, ..., 2, will span V.

(d) Is it true that if 21, ..., 2, span V and we fix 1 < k < n, then x1,...,x%
will span V7 Either prove that this is true or give a counterexample.
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‘We have been concentrating on independence of finite sets of vectors. There
are other cases to consider. First, what do we do if we have a set of no vectors?
Since there is no nontrivial linear combination of vectors in the empty set that
equals 0, it makes sense to say that the empty set is independent. We make
this a definition.

Definition 3.62. The empty set is declared to be a linearly independent sub-
setof V. &

The set {0} that contains the zero vector is not the empty set. That is,
{0} # 0. The empty set 0 is an independent set of vectors, while {0} is a
dependent set of vectors (why?).

The other extreme is infinite sets of vectors. As we discussed before, we are
not allowed to use infinite series when we form linear combinations. Therefore,
we define an infinite set of vectors to be independent if any finite subset is
independent. Here is the definition.

Definition 3.63. Let S be any subset of a vector space V. Then we say that
S is a linearly independent set of vectors if whenever we choose n different
vectors 1, ...,x, from S, the set {x1,...,2,} is independent. <

If it is possible to write our infinite set as a list, i.e., we can write S =
{x1,x2,...}, then S is independent if and only if {z1,...,2,} is independent
for every value of n. We’ll come back to this, but here is an example that you
should think about. For each integer £k = 0,1,2,..., let py be the function
whose rule is py(z) = 2¥. This is a polynomial, so it belongs to the set P of
all polynomials. Let S = {pg,p1,p2,...}. Is S a linearly independent set of
vectors?

3.7.2 Span, Independent, Injectivity, and Surjectivity

Now I want to relate the issues of spanning and independence back to
things we learned earlier, namely injectivity and surjectivity. We’ll see that
the question of whether a set of vectors spans V' is just another way of asking
whether a certain function is surjective, and likewise independence is really a
question about injectivity of some appropriate function.

To see where this function comes from, remember that both spanning and
independence are questions about linear combinations. A linear combination
of vectors x1,...,x, is a vector of the form

n
E CLTr = C1T1 + -+ Crhy.
k=1

Each choice of scalars ¢y, ..., ¢, gives you linear combination. Some of these
choices might give you the same vector—we said that if that happens, then
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we call z1,...,x, a dependent set, while if every choice of scalars c1,..., ¢,
gives you a different vector then x4, ..., x, are independent. So independence
is connected to how the linear combination c¢ix; + --- + ¢,x, relates to the
scalars c1,...,c,. We can think of this in terms of inputs and outputs. You
input scalars cq, . .., ¢, and you output a linear combination c1x1+- - -+ ¢, Zn.
If every input gives you a different output then you have linear independence.
Of course, there are n scalars ¢y, ..., ¢, and not just one input, but you can
think of this as just being an input of one vector ¢ = (cy,...,¢,) from R
instead of an input of n scalars from R. Each vector ¢ = (¢1,...,¢,) in R
gives you one choice of scalars ¢y, ..., ¢,, and we can associate that with input
vector ¢ with the output c1x1 + - -+ 4 ¢, z,. Inputs go to outputs—we have a
function. Here’s the theorem.

Theorem 3.64. Let x1,...,x, be finitely many vectors in V. Define a func-
tion T: R™ — V by the rule

n
T(c) = Z CLTE, fore=(c1,...,cn) €R™ (3.7)
k=1
Then
T is injective <=  x1,...,x, are independent.
Proof. =. Suppose that T is injective. We must show that x1,...,x, are

independent. To do this, we must show that the only linear combination that
equals the zero vector is the trivial linear combination. So, suppose that we
have a linear combination that equals the zero vector, i.e., suppose there are
some scalars cy,...,c, such that

i CrZl = 0.

k=1

Somehow we must show that each scalar ¢ is zero.
Let ¢ = (c1,...,¢p). Then ¢ is a vector in R™, which is the domain of T,
and by the definition of T we have

=
=

(Note that the 0 on the line above is the zero vector in V.)

Now, the zero vector is a vector in R™, so T' must map it somewhere. What
is the image of the zero vector under 7?7 The zero vector in R" is the vector
0=(0,...,0). Applying T to this vector, we have by definition of T that

T(0) = » Oz = 0.
k=1
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(Note that there are three different types of 0 on the preceding line! One is
the zero vector in R™, one is the number 0, and one is the zero vector in V.)
Thus, we have shown that

T(c) = 0 = T(0).

But our function T is injective, so this implies that ¢ = 0. That is, the vector
c¢=(c1,...,¢,) in R™ equals the zero vector 0 = (0,...,0) in R™. By defini-
tion, this means that ¢c; =0, c; =0, ..., ¢, = 0. Hence the linear combination
ZZ=1 crxy 1s indeed the trivial linear combination.

In summary, we've shown that the only linear combination of z1,...,x,
that equals the zero vector is the trivial linear combination, so we conclude
that x1,...,x, are linearly independent vectors.

<. Now it’s your turn. Suppose that z1,...,x, are linearly independent,
and prove that T is injective. To do this you must show that if T'(c) = T'(d)
for some wvectors ¢, d € R™, then ¢ = d. So, you start by supposing that you
have T'(¢) = T(d) for some ¢, d € R™. Then you start working and keep going
until you have shown that c=d. 0O

Spanning is also an issue about the function T. By definition, vectors
T1,...,T, span V if the set of all linear combinations of x1, ..., x, equals the
entire space V. Each linear combination is an output of the function 7', so
spanning is related to whether the set of outputs of T' equals the set V. Here
is what you have to prove.

Exercise 3.65. Let z1,...,x, be finitely many vectorsin V. Let T: R — V'
be defined just as in Theorem 3.64.

(a) Prove that
range(T) = span{zy,...,2,}.

Remember that to prove that two sets are equal, you must show that each
element of the first set belongs to the second, and vice versa.

(b) Prove that
T is surjective <=  21,...,x, span V. &

Here is some additional terminology, and then some further exercises about
the function T. We will assume in this definition and exercises that z,...,x,
are some finitely many vectors from V, and the functionT is defined by the
rule given in equation (3.7).

Definition 3.66. The kernel or nullspace of T is

ker(T) = {ceR" :T(c) = 0}. &
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Exercise 3.67. Prove that T is a linear function. This means that you have
to prove that

Ve,yeV, Va,beR, T(ax+by) = aT(z)+dT(y). &

Exercise 3.68. Prove that the following three statements are equivalent.
(a) 1,...,x, are linearly independent.
(b) T is injective.
(c) ker(T) ={0}. <&

When we say that that the three statements (a), (b), (c) are equivalent,
we mean that if any one of them is true then the other two are also true.
Essentially, there are siz implications that need to be proved:

(a) = (b), (b)=(a), (a)=(c), (c)=(a), (b)=(c), (c)= (D)

However, you don’t actually have to write six proofs. For example, if you
proved the three implications

then you would be done, because by combining these three implications you
can get the missing ones. For example, if we have proved (a) = (b) and
(b) = (c), then by combining these two implications we get (a) = (c) for
free. Just make sure that you prove enough implications that all of the six
possible implications follow.

Here’s another exercise that also asks you to prove that three statements
are equivalent.

Exercise 3.69. Prove that the following three statements are equivalent.
(a) z1,...,x, span V.
(b) T is surjective.

(c) range(T)=V. &

You should also formulate and prove a theorem that gives statements that
are equivalent to “T" is a bijection”.

3.7.3 Examples and Exercises

Here are some exercises for you to work.
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Exercise 3.70. Let n € N be a fixed positive integer. Let M, «, be the
vector space of all n x n matrices.

(a) Find a set of vectors that spans M, .
Hint: Try the particular case n = 2 first.

(b) Find a set of vectors that spans M, and is linearly independent.

Remark: A set that both spans and is linearly independent is called a basis
for the space, and the number of vectors in the basis is the dimension of the
space. What is the dimension of M, «,7 <

Exercise 3.71. Define

V =ALz= ER':z +ay+a3+a4=0

Find three vectors vy, va, v3 € R* such that V = span{v;,vs,v3}. Determine
whether your vectors are linearly independent or not. <

Exercise 3.72. Let S be the vector space of all infinite sequences of real
numbers that was introduced in Exercise 3.23. For each integer n = 1,2,...,
let

e, =(0,...,0,1,0,0,...),

where the 1 is located in the nth component. Let £ = {ej,es,...}. Either
show that span(€) = S or find a vector in S that is not in span(€). If span(€)
is not equal to all of S, then find an explicit description of span(£), i.e., tell me
exactly which vectors x are in span(€) without appealing to spans or linear
combinations. <

Exercise 3.73. Let M,,«,, be the vector space of all n x n matrices. Annxn
matrix A is said to be skew-symmetric if the transpose of A equals the matrix
—A e, if AT = —A.

(a) Give an example of each of the following, or explain why no such
matrix exists: i. a diagonal 3 x 3 skew-symmetric matrix; ii. a non-diagonal
3 x 3 skew-symmetric matrix; iii. a 3 x 3 skew-symmetric matrix with all
nonzero entries.

Remark: A diagonal matrix is a matrix such that all the entries off of the
diagonal are zero. In particular, the zero matrix is a diagonal matrix.

(b) Let
S = {A € My xn: Alis skew—symmetric}.

Is S a subspace of M,,x,? Hint: (A + B)T = AT + BT,

(c) If S is a subspace, then find a set of vectors that spans S.
Hint: Try to do the specific cases n = 2 or n = 3 first.
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(d) Find a basis for S, i.e., a set of vectors that both spans S and is linearly
independent. The dimension of S is the number of vectors in a basis for S.
What is the dimension of S?7 <

Exercise 3.74. For each integer n € N, let f,, be the function whose rule is
fo(z) = ™%, z € R.

(a) Given any finite integer n € N, show that {f1,..., fn} is a linearly
independent set of vectors in F(R).

(b) Use part (a) to prove that F(R) is not finite-dimensional. <

Exercise 3.75. Let n € N be a fixed positive integer. Let P be the vector
space of all polynomials, and P,, be the vector space of all polynomials whose
degree is at most n. Let

S = {pePn:p(0)=0}.

(a) Prove that S is a subspace of P,.

(b) Find a set of vectors that spans S. Hint: Try to do the specific cases
n=1or n =2 first.

(c) Find a basis for S, i.e., a set of vectors that both spans S and is linearly
independent. The dimension of S is the number of vectors in a basis for S.
What is the dimension of S7 <

3.7.4 Too many vectors are dependent

One of the things that we will study in the next section is bases, which are
sets of vectors that both span the vector space and are linearly independent.
But first we need to prove a very fundamental theorem. Basically this theorem
says that if we choose too many vectors in a space, then that set of vectors
will be dependent. More precisely, if we know that our space is spanned by
a set of k vectors, then any set of more than k vectors in that space will be
dependent.

The proof of this theorem will take more work than any proof that we’'ve
done so far. Make sure that you can understand how the proof progresses line
by line. At this point, there’s not much chance that you could think of such a
proof on your own, but you can understand the proof. Work through, line by
line, and make sure that you believe that each step is a logical consequence
of what has been done before.

Here’s a more detailed introduction to the theorem. Suppose that we have k
vectors, say T1,...,Tg. The span of these vectors is a subspace. We want to
know how many independent vectors can we choose from span{zy,...,z}.
The theorem will show that as soon as we choose k+1 vectors y1, ..., Yk, Yr+1
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from this span then we must have a dependent set. The y; vectors might be
different from the z; vectors, the only thing that we require is that the y;
vectors lie in the span of x1, ..., x,. By iterating the theorem, it will follow as
a corollary that if we choose more than k vectors from span{zy,...,z)} then
we must have an dependent set.

Theorem 3.76. Let S = {z1,...,x1} be a set of finitely many vectors in a
vector space V. Then every set of k+ 1 vectors in span(S) is dependent. That
18,

Y1,y Yk Yk+1 € S — {y17°"7yk7yk+1} 18 dependent.

Proof. The proof will be by induction on the index k.

Base Step k = 1. Often (but not always!), the base step of a proof by
induction is easy, and this is certainly true for this proof. If £ = 1, then our
set consists of a single vector. Let’s just call this vector = instead of =1, so our
set S is simply S = {z}. Since we have only a single vector, its span is just
the set of all scalar multiples of x:

span(S) = span{z} = {cz:ceR}.

Our task is to show that if we choose any two vectors from this span, say
y1,y2 € span{z}, then we will have a dependent set. Since y; and ys must
each be multiples of x, we have y; = ax and y3 = bx for some real numbers a
and b. If you haven’t done this already, you should prove now that a set that
consists of scalar multiples of a single vector is dependent. Hence {y1,y2} is a
dependent set of vectors, and therefore the conclusion of the theorem is valid
when we have k = 1.

Inductive Step. Now we will show that if the theorem is true for some
value of k, then it is also true for the value k + 1. Note that we’re not directly
showing that the theorem is true for k. We're only showing that if it is true
for some k then it is true for the next integer k£ + 1. To make things a little
notationally easier, I'm actually going to show that we can go from k—1 to k.

So, suppose that the conclusion of the theorem is valid for the value k — 1.
That is, we suppose that the following inductive hypothesis is true:

any choice of k vectors in the span of kK —1 vectors must be dependent.

Writing this in symbols, and choosing letters different from y; and z; to avoid
confusion, we are assuming that the following statement is true:

21y-.-,2K € span{wy,...,wg—1} =  2z1,...,2; are dependent. (3.8)

The previous line is our inductive hypothesis. Assuming that the inductive
hypothesis is true, we must prove that a similar statement holds for the next
integer. That is, we must prove that if y1,...,yx11 € span{x1,...,zx}, then
Y1,---,Yk+1 are dependent. This is an if-then statement, so we suppose that
we have k + 1 vectors
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Y1y o5 Yk Yk+1 € Spa‘n{xlv e ,Z‘k},

and our goal is to prove that yi,...,yi+1 are dependent.
It will get a little notationally ugly because we have so many vectors
to work with. Let’s look at the vector y;. We know that y; belongs to

span{z, ...,z }. By definition, this means that y; is a linear combination
of x1,...,xk. Therefore, there are some scalars cy, ..., c; such that
Y1 = c1T1 + cax2 + - - - + Cp Tk

Unfortunately, we are going to want to write a similar equation for each of
the vectors ya, ..., yr+1. Each one of these vectors will also be a linear com-
bination of x1,...,x, but the scalars will be different. So we need some way
to tell which scalars belong to which vector. We’ll solve this by using double
subscripts. That is, we will write

Y1 = 1,171 + 61222 + - + a1 Tk,

and we will have a similar equation for each the vectors ys, ..., yg, Yx+1. Writ-
ing all this out, there are scalars a; ; such that

Y1 = a11T1 + a12T2 + - + a1 ( Tk,
Y2 = 2121 +a22%2 + -+ a2 Tk,
Yk+1 = Qk+1,1T1 + Qg4+1,2%T2 + - + Qg1 ,kTk-

Note that the scalar a;; is located in the ith row of the preceding set of
equations, and furthermore it is in the jth column on the right of the equals
sign.

Now we will split into cases. Remember that our goal is to prove that
Y1, ---,Ykr+1 1S a dependent set of vectors.

Case 1: First column is all zeros.

This is the easy case. If the first columns of scalars is all zero (meaning
a1,1,a2,1,...,0x+1,1 are all zero), then our system of equations from above
reduces to the following system:

Y1 = a12T2 + -+ a1 xTk,

Y2 = Q22T + -+ a2k Tk,

Yk+1 = Qk+1,2T2 + -+ Q41 kTk-

This tells us that each vector y; is a linear combination of the vectors
To,...,T. In other words, we have
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Y1,Y2s -, Ykt1 € span{za,...,xp}.

Thus we have k 4 1 vectors in the span of £ — 1 vectors. Our induction hy-
pothesis tells us that any set of k vectors in span{xa,...,z} must be de-
pendent. Therefore y1,ys,...,yx is a set of dependent vectors. Since these
vectors are dependent, any larger collection of vectors is dependent as well,
ie, y1,Y2,- -, Yk, Yk+1 is dependent (WHY? Prove it!). Therefore we’re done
with the proof in this case.

Case 2: The first column is not all zeros.

This is the harder case. Somehow we have to find a way to use our inductive
hypothesis, which involves k — 1 vectors instead of k vectors. In Case 1 this
was easy because all the coefficients in front of x; were zero, so in effect that
vector just dropped out and left us with the k — 1 vectors xs, ..., x;. Now
we’re not so lucky.

Remember our system of equations:

Y1 = a1,1%1 + a1,2T2 + - + a1 x Tk,
Y2 = Q2,1%1 + G222 + -+ + a2k Tk,
(3.9)
Yk+1 = Qk+1,1T1 + Qg+1,2T2 + - + Q1 kTk-
Our assumption now is that a; 1,...,ax4+1,1 are not all zero. So at least one of

these scalars must be nonzero. If it is a; 1, then we can make our lives simpler
by interchanging the first and ith rows. In other words, just switch the names
of y; and y;, and corresponding switch the names of the scalars in those rows.
This does not change anything except what we call the vectors, and it makes
things simpler because now we have the first scalar in the first row nonzero.
So our first row is

Y1 = a1,121 +a1222 + -+ ay Tk, (3.10)

and the scalar a; ; is nonzero. Since a;; # 0, we can multiply both sides of
equation (3.10) by the scalar ag 1/a1,1. This gives us a rather ugly equation:

2,1

@21 az 1 a2 1
1 = —— 1171+ ——a12T2+ -+
1,1 ai,1 a1,1 ai,1

) ) )

a1,kTk-

The good news is that the scalar is front of x; is not so bad, it’s just as ;.
The other scalars are not very nice, but we don’t really care what they are,
so let’s just rename them as follows:

doy1 = ag 21 +baoxo + - + bo .

Similarly, if we multiply both sides of equation (3.10) by as.1/a1,1 and simplify,
then we get an equation of the form
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dsy1 = asx1 + bgoxo + -+ + b3 pxp.
Doing this over and over, we get the following system of equations:
Y1 = a1171 +a1222 + - + a1 g2k,

doy1 = az1@1 +bapxa + -+ bo gy,
(3.11)

dry1y1 = p411%1 + bpp1,20T2 + -0+ b1 1 Tge

Note that in the system above, we have a multiple of y; on the left side
of the equals sign in every row. In contrast, the system we had before had
Y1,Y2, - - -, Ye+1 on the left of the equals sign.

So now we have two similar, but not identical, systems of equations. We
subtract the second system, given in equation (3.11), from the first, given in
(3.9). Each system has identical first rows, so the first row just drops out.
However, they are different from the second row onwards, so they don’t en-
tirely cancel. But the first column on the right of the equals sign is the same
in both systems, so that first column does cancel out when we subtract them.
Here’s what we are left with:

yo —doyn = (ag2 —ba2)xa+ -+ (agr — boi)Tk,

Ye+1 — dip+1y1 = (agt+1,2 — be+1,2)T2 + - + (@k+1,k — Dkt1.86) Tk

There are k equations, each with a vector on the left-hand side and a linear
combination on the right-hand side. It doesn’t really matter what the scalars
in this system actually are. Instead, what is important is that each of the
vectors yo — doy1, ..., Yk+1 — dk+1y1 1S a linear combination of x,, ..., zk.
That is,
Y2 —day1, -, Yrt1 — dry1y1r € span{za,..., Tk}

We have k vectors in the span of k — 1 vectors. Our inductive hypothesis tells
us that these k vectors must be dependent. Hence there is some nontrivial
linear combination that equals the zero vector, i.e., there are some scalars
ta,...,tx+1 not all zero such that

to(ye —doyr) + -+ + tet1(Yeg1 — de+1z1) = 0.

If we rearrange this equation, we get

(—tady — -+ —tpprdig1)yr + taye + -+ + tepayer = 0.
That is, there is a nontrivial linear combination of y1, 4o, ..., yx11 that equals
the zero vector (why is it nontrivial?). Hence yi1,y2,...,yx+1 is a linearly

dependent set of vectors. This is exactly what we needed to prove to complete
the induction. 0O
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Your task now is to extend this result to more than k vectors in the span
instead of just k + 1 vectors in the span.

Exercise 3.77. Assume that x1, ...,z are finitely many vectors in a vector
space V. Show that if m > k, then

Y1y Ym € span{zy,...,xx} =  Y1,...,Ym are dependent.

Hint: Don’t make this too hard! You don’t have to try to redo the proof
of Theorem 3.76 to cover m instead of k + 1 vectors. It’s actually very easy,
because we have already proved Theorem 3.76, and you can use that theorem
instead of trying to reprove it. <

3.8 Bases and Dimension

So far, we have looked at sets of vectors that span, and sets of vectors that
are independent. A set that has both of these properties will be called a basis
for the space.

Definition 3.78. Let B be a set of vectors in a vector space V, i.e., B C V.
We say that B is a basis for V if the following two requirements are both
satisfied:

(a) B spans V, i.e., span(B) = V, and

(b) B is linearly independent. <

Here are some examples. You’ve probably already done most of the work
needed to prove that these are indeed bases for the given spaces.

Exercise 3.79. (a) Let d be a fixed positive integer. For k = 1,...,d, let
e denote the vector in R? that has a 1 in the kth component and zeros
elsewhere:

1 0 0
0 1 0
er= |0, e= 1|0}, ea = | Y
0 0 1

Show that B = {ey,...,eq} is a basis for R? (we call this the standard basis
for RY).

(b) Let P be the vector space of all polynomials. Show that
B = {1,z,2%...}
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is a basis for P (we call this the standard basis for P).
(c) For each integer n =1,2,..., let
en = (0,...,0,1,0,0,...),

where the 1 is located in the nth component. Let cog be the space of all
sequences that have only finitely many nonzero components:

cop = {x:(xl,...7xn,0,07...):neN,xl,...7xn€R}.

Prove that & = {e1,ea,...} is a basis for ¢ypy (compare this to the result you
obtained in Exercise 3.72).

(d) There are always many different bases for a given vector space. For
each of parts (a), (b), (c) above, find a different set that is a basis for the
given space. <

3.8.1 Finite Bases

Suppose that we have a vector space V, and there is a finite set of vectors
B ={xy,...,2,} that is a basis for V. What does this tell us about the vectors
in V? First, since we know that BB spans V, we know that V equals the set of
all linear combinations of x1,...,x,:

V = span(B) = span{xi,...,z,} = {chxk:cl,...,anR}.
k=1

Hence every vector in V' can be written as © = cix1 + -+ - + ¢z, for some

choice of scalars cq,...,¢, € R. However, we know more: Because the vec-
tors x1,...,x, are independent, there is one and only one choice of scalars
C1,...,Cp such that x = ¢jxy1 + -+ - + ¢y, (why is there a unique choice of

scalars—prove this). This proves the following theorem.

Theorem 3.80. If there is a finite set of vectors B = {x1,...,z,} that is a
basis for a vector space V, then every vector x € V' can be written

n
r = E cxry  for unique scalars cq,...,c, € R. &
k=1

Thus, when we have a basis for a vector space, every vector can be written
as a unique linear combination of the vectors in the basis.

A given vector space always has many different bases. However, we will
show that if a vector space has a finite basis (a basis with finitely many
vectors), then every basis contains exactly the same number of vectors. We
will prove this, and then we will define the dimension of the space to be the
number of vectors in a basis.
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Theorem 3.81. Suppose that there is a finite set of vectors B = {z1,...,z,}
that is a basis for a vector space V. Then every basis for V. must consist of
precisely n vectors.

Proof. Suppose that &€ = {y1,...,ym} is also a basis for V. Our goal is to show
that m = n. We will do this by showing that the cases m > n and m < n are
impossible.

Case m > n. Suppose that m was strictly larger than n. Since B is a basis
for V, we know that it spans V. Then we have

Yy Ym € V = span(B) = span{xy,..., T}

That is, y1, . - ., Ym are more than n vectors that are contained in the span of
the n vectors x1, . .., x,. It therefore follows from Exercise 3.76 that y1,...,ym
are dependent, which contradicts the fact that &€ = {y1,...,ym} is a basis.
Therefore this case cannot happen.

Case m < n. Now suppose that m was strictly less than n. Then we have
Z1,...,%y, € V = span(€) = span{yi,...,Ym}-

But then z7,...,z, must be dependent (why?), which contradicts the fact
that B = {x1,...,2,} is a basis. Therefore this case can’t happen either.

Since we’ve ruled out the possibilities that m > n or m < n, the only
possibility left is that m = n. In summary, if we have a basis that has finitely
many elements, then there must be exactly n vectors in this basis.

This does leave one more possibility, however—could there be an infinite
set that is a basis for V7 We will have to rule this out. Suppose that there
was some infinite set S that was a basis for V. That is, span(S) =V and S is
independent, but there are infinitely many vectors in .S We have to show that
this leads to a contradiction. Here’s one way. Since S contains infinitely many
vectors, we can choose infinitely many distinct vectors y1, yo, - - - € S (this may
or may not be a list of all the vectors in S, but it doesn’t matter if we don’t
get all of them, just that we have infinitely many vectors from S). Remember
that B = {x1,...,2z,} is a basis for V. Let m be any number strictly greater
than n (for example, you could take m = n + 1). Then, just like one of the
cases from above, we would have

Yi,-- - Ym € V = span(B) = span{zi,...,Tn}.

But then it follows from Exercise 3.77 that y1,..., vy, are dependent, which
contradicts the fact that every finite set of vectors in S is independent. Hence
this case can’t happen either, i.e., there’s no infinite set of vectors that is both
independent and spans V. O

Now that we know that every basis for V' has the same number of vectors,
we call that number the dimension of the space.
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Definition 3.82. Let V' be a vector space.

(a) If there is a finite set of vectors B that is a basis for V, then we say
that V is finite-dimensional, and the number of vectors in B is called the
dimension of V. We denote this number by dim(V).

(b) If there is no finite set of vectors that is a basis for V, then we say
that V' is infinite-dimensional. <

3.8.2 Exercises on Finite-Dimensional Vector Spaces

Here are some exercises for you.

Exercise 3.83. (a) Let M,,,x, be the set of all m x n matrices. There are
many bases for M,,xn, but what do you think is the “standard basis” for
M xn? What is the dimension of M, xn?

(b) An nxn matrix A = [ai;]; j=1,... » is said to be upper triangular if every
entry that is strictly below the diagonal of A is zero, i.e., a;; = 0 whenever
1 > j. Let S be the set of all n X n upper triangular matrices. Find a basis
for S and find the dimension of S.

(¢) An n x n matrix A is symmetric if it equals its own transpose. That
is, a symmetric matrix satisfies A = AT, In terms of entries, this means that
ai; = aj; for all 4, 5. Let S be the set of all symmetric n X n matrices. Find a
basis for S and find the dimension of S. <

Exercise 3.84. Let V' be a vector space.

(a) Suppose that z1,...,z, are independent vectors in V, and let S =
span{xy,...,Z,}. Find the dimension of S.
(b) Suppose that y1, ...,y are any vectors in V' (not necessarily indepen-

dent), and let S = span{yi,...,ym}. Show that dim(S) < m.

(c) Give an example that shows that it is possible to have dim(S) < m in
part (b).

(d) Assume z € V is a nonzero vector, and let L be the line through x
(see Notation 3.31). Find dim(L). <

Exercise 3.85. Let V' be a vector space.

(a) Suppose that x1,...,z; are independent vectors in V. Prove that
dim(V) > k.

(b) Give an example that shows that dim(V') > k is possible in part (a).
Is dim(V) = oo possible?
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Exercise 3.86. (a) Let V be a finite-dimensional vector space. Prove that
any subspace of V is finite-dimensional. If W is a vector space and W 2O V,
must W be finite-dimensional?

(b) Let V' be an infinite-dimensional vector space. Prove that any vector
subspace that contains V' must be infinite-dimensional. Must every subspace
of V be infinite-dimensional? 0O

Exercise 3.87. Let V' be a vector space. Prove that the following two state-
ment are equivalent.

(a) V is infinite-dimensional (according to Definition 3.82, this means that
there is no finite set of vectors that is a basis for V).

(b) There is no finite set of vectors that spans V. <

3.8.3 A Basis for the Zero Space

Before going further, we need to consider the pesky “zero space” {0}.
There are only two subsets of this space, namely the empty set and {0}. You
should show that:

e () is independent but does not span {0};
e {0} spans {0} but is not independent.

Consequently, there is no subset of {0} that both spans this space and is
independent. Therefore, {0} does not have a basis and hence has no dimension.
However, this fact is rather inconvenient, and if we insist on saying that {0}
has no basis then we constantly will have to make exceptions in the statements
of our theorems. It will be a lot easier to simply declare that the dimension
of the space {0} is zero. We make this into a definition.

Definition 3.88. We declare that the empty set () is a basis for the vector
space {0}, and we declare that the dimension of this space is zero, i.e.,

dim({o}) = 0. ¢

3.8.4 More Facts about Finite-Dimensional Vector Spaces

Suppose that V is a finite-dimensional vector space whose dimension is n, and
we have some independent vectors x1,...,x; € V, but Kk < n. Then x4, ...,z
cannot span V (why, exactly—give a proof!), and therefore this set of vectors
is not a basis for V. However, we will prove that we can find some vectors to
add onto this collection in order to give us a basis for V. A key ingredient to
the proof is given in the following exercise.
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Exercise 3.89. Suppose that xi,...,x; are independent vectors in V, but
they do not form a basis for V.

(a) Prove that span{xy,..., 2%} is a proper subspace of V; i.e.,

span{xy,..., x5} # V.

(b) Show that if y is any vector in V' that is not in span{xy,..., 2y}, then
{z1,...,z,y} is an independent set of vectors in V.

In other words, the preceding exercise says that if we have some indepen-
dent vectors x1,...,x) that don’t span the entire space V, then we can create
a larger independent set of vectors x1, ..., Zk, y just by adding on any vector y
that is not in the span of z1,..., ;. The idea of the proof of the next theorem
is that if this new set still doesn’t span V, then we can add on yet another
vector to make an even larger independent set, and keep doing that until we
get to a set that does span V.

Theorem 3.90. Let V' be a finite-dimensional vector space. If x1,...,Tg
are independent vectors in V' that do mot span V, then there exist vectors
Tht1y-- -5 Tn Such that B={x1,..., %, Tpt1,...,Tn} is a basis for V.

Proof. Let

Wy = span{xi,...,x}.

Since the vectors xi,...,x; are independent and span Wj, the collection
{z1,..., 21} is a basis for Wy. Now, we can’t have Wy = V. (Why not?
Explain this!) Hence Wy, is a proper subset of V, i.e., there are vectors in V
that are not in Wj. Choose any vector that is in V' but not in Wp, and call
this vector xy4;1. That is, we choose a vector

Tpp1 € V\ Wy
Exercise 3.89 tells us that z1,...,zg, zg41 is independent. Let
W41 = span{xy,..., Tk, Tht1}-
Note that {xi1,...,zk,Zkr1} is a basis for Wyy1 (why?), and therefore

dim(Wk_H) =k+1.

There are two possibilities. The first possibility is that Wy = V. In this
case {x1,...,%k, Tp+1} 18 a basis for V. Since V' has dimension n, this implies
that n = k + 1. Therefore we are done, we’ve found a basis for V' by adding
vectors to our original set of independent vectors x1, ..., Tk.

The second possibility is that Wy41 # V. Then we have k + 1 independent
vectors xi,..., Tk, Tx4+1 that do not span V. Remember that we can never
have more than n independent vectors in V' (this is because of Theorem 3.76),
so the only way that this possibility can happen is if £ + 1 < n (and in fact
we’ll see that we must actually have k + 1 < n). Since 1, ..., Tk, Tpr1 are
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independent but don’t span V, we can argue just as we did above—we choose
a vector
Ty € V\Wk+1.

Exercise 3.89 tells us that z1,..., 2k, Zxt1, Tr+2 is an independent set of vec-
tors (therefore, because of Theorem 3.76, we must actually have k 4+ 2 < n,
and hence k + 1 < n just like we said). We let

Wk+2 = Span{xlv vy Ty .’Ek+2}.

Again there are two possibilities: Either Wy,1o = V and we are done with
the proof, or W14 # V and we repeat the process to find yet another vector
Th+3-

Now, it’s very important to observe that this process can’t go on forever,
because each time we do it we get one additional vector, yet we know that
we can never have a set of more than n independent vectors in V. Therefore,

for some integer ¢ we must get to the case Wiy, = V. After ¢ steps we
will have k + ¢ = n, and we will have found a set of independent vectors
XT1yeeeyThyThils- -, Ly that spans V. O

The next exercise is a “two out of three” result. It says that if you know
two of three possible things about a set, then you automatically know the
third thing. In order to prove this kind of statement you need to write three
proofs, one for each of the following implications.

(@+@®)=(c), (a)+(c)=(b), (b)+(c)= (a)
Theorem 3.90 should be useful in proving this exercise.

Exercise 3.91. Let V' be a finite-dimensional vector space, and let n =
dim(V'). Let B = {x1,..., 2k} be a finite set of vectors from V. Prove that if
any two of the following statements are true, then the third statement is true
as well.

(a) B is independent.
(b) B spans V.
()k=n. <

The preceding exercise gives you several ways to prove that a set B is a
basis for a finite-dimensional vector space. First, you could simply apply the
definition and prove that B both spans and is independent. If you do this
then you proving that statements (a) and (b) in the exercise hold, and you
automatically get statement (c¢) for free (the basis has n vectors).

A second possibility is that you could prove that statements (a) and (c)
hold. That is, you prove that B has n vectors, and your vectors are indepen-
dent. You then automatically get statement (c¢) for free—you get to conclude
that your set spans V' without having to prove it. The catch is that you have
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to know what n is, i.e., you have to know the dimension of V' ahead of time. If
you know what n = dim(V') is, then Exercise 3.91 tells you that it’s enough to
find n independent vectors, because it automatically follows that those vectors
must span V.

The third choice is to prove statements (b) and (c). That is, you prove
that you have n vectors and these vectors span V. Again, you have to know
ahead of time what dim (V') is—if you don’t know this, then there’s no way
that you can know that you have n = dim(V") vectors.

In summary, if you know the dimension of V, then Exercise 3.91 gives you
some new ways to prove that a given set is a basis. However, if you don’t know
the dimension of V, then the exercise isn’t helpful. In that case, in order to
prove that a set is a basis your only choice is to prove that the set is both
independent and spans V.

Here are some related exercises.

Exercise 3.92. Let V be a finite-dimensional vector space and let n =
dim(V).

(a) Show that if S is a subspace of V' and dim(S) = n, then S = V. In
other words, there is only one n-dimensional subspace of an n-dimensional
vector space.

(b) Let S be a subspace of V. Show that every basis for S is part of some
basis for V.

(c) Let S be a subspace of V. Is it true that every basis for V' contains a
subset that is a basis for S? If true, then you should prove it; if false, give a
counterexample. <

3.8.5 Maximal Spanning Sets, Minimal Independent Sets

We would like to find some additional equivalent ways to characterize
bases. The following theorem says that a set is a basis if and only if it is a
“maximal” independent set, i.e., it is independent, and if you add on any more
vectors to the set then it becomes dependent.

Theorem 3.93. Let B = {z1,...,2,} be a set of finitely many independent
vectors in a vector space V. If no larger set of vectors that contains x1,..., T,
is independent, then B is a basis for V.

Proof. We are told that {z1,...,2,} is a set of independent vectors, but as
soon as we add more vectors it becomes dependent. We want to prove that
{z1,...,z,} is a basis. Since we know these vectors are independent, we just
have to show that they span all of V. We proceed by contradiction: Suppose
that they don’t span V. This means that span{z,...,2,} is a proper subset
of V, so there exists some vector y € V' that is not in span{zy,...,z,}. But
then Exercise 3.89 implies that {1, ..., %,,y} is an independent set of vectors,
which contradicts the fact that no larger set of vectors is independent. O
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Here is a similar exercise formulated in terms of spans.

Exercise 3.94. Show that a minimal spanning set is a basis. That is, suppose
that {z1,...,z,} spans V, but no proper subset of {z1,...,x,} spans V, and
prove that {z1,...,z,} is a basis for V. ¢

You can use the preceding exercise to solve the following exercise.

Exercise 3.95. Show that every spanning set contains a basis. That is, sup-
pose that {z1,...,z,} spans V, and prove that there is some subset of
{z1,...,2,} that is a basis for V.

3.8.6 Bases for Infinite-Dimensional Vector Spaces

By definition, a basis is a set that both spans and is independent. Just
keep in mind that even if our basis contains infinitely many vectors, when we
form linear combinations we only sum finitely many of these vectors at a time.

For example, let P be the set of all polynomials, and let £ = {1,z,22,...}.
Even though we have infinitely many monomials 1,z,z2,... to choose from,
when we form linear combinations we only select finitely many of these at a
time. We can choose any finite number of them, but only finitely many to use
to form a given linear combination. A typical linear combination has the form

ap- 1+ a1z + asx® + -+ apa™

for some integer n > 0 and some scalars ag, ay, ..., a, € R. Taking every such
linear combination gives us the span of 1, z,22,.... That is,

span(€£) = span{l,z, 2%, ...}
= {a0+a1x+-~-+anx”:n2 0,a0,a1,...,an € R}
= P.
The span of the set of monomials & = {1,z,22,...} is P. Hence & spans P.
Similarly, when we test for linear independence, we deal with finite linear
combinations. We proved earlier that £ = {1,z,2%,...} is linearly indepen-
dent, because there is no finite nontrivial linear combination that equals that

zero polynomial. So £ is both independent and spans P, so it is a basis for P.
Here are some exercises on infinite bases.

Exercise 3.96. Suppose that B = {x1,za, ...} is a basis for a vector space V.
Given x € V, prove that there exists a unique choice of integer n > 1 and
scalars cq, ..., c, such that

n
T = chxk and cn # 0.
k=1

Explain why we have to include the condition ¢,, # 0 in order to have a unique
representation of xz. <
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Exercise 3.97. Let ¢, = (0,...,0,1,0,0,...) be the infinite sequence that
has a zero in each component except for the nth component, where it has a 1.
Let £ = {ey,e9,€3,...}, and let

V = span(£) = span{ej,es,e3,...}.

Prove that £ is a basis for V. Give an explicit description of this set V, without
reference to spans or linear combinations.

Exercise 3.98. Suppose that V is an infinite-dimensional vector space. Show
that there is no finite set of vectors {x1,...,x,} that spans V.

3.9 Components

If B={x1,...,2,} is a basis for a vector space V, then every vector z € V
can be written in the form

n
T = g CkX = C11 + -+ Crly
k=1

for a unique choice of scalars ci,...,c,. Hence the vector z is completely
determined by the scalars ci,...,c, and vice versa. We give the following
name to these scalars.

Definition 3.99. Assume B = {z1,...,z,} is a basis for a vector space V.
The unique numbers c1, ..., c, that satisfy

n
T = E CrLp = Ci1x1+ -+ cpay
k=1

are called the components of x with respect to the basis B.

Since there are m components, (ci,...,¢,) is a vector in R™. We call
(c1y...,¢n) the component vector of x with respect to the basis B, and we
write

[z]g = (c1,...,¢n). &

In summary, z is a vector in V, but [z]p is the vector in R™ that tells us
how to write x in terms of the basis B. The components of x will depend on
what basis we choose.

Ezample 3.100. Consider the standard basis & = {1,z,...,2"} for the space
P, of all polynomials of degree at most n. The unique way to write a polyno-
mial in terms of this basis is

p(z) = ag+ a1z + azx® + -+ apz”.
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The components of p with respect to the standard basis are (ag, ai, ..., an).
This is a vector in R**!, we write
[PL‘,‘ = (ao, Aly vy an) S Rn+1.
Although p is a function, its component vector is a vector in R**1. ¢

In particular, consider the polynomial p(x) = 1+ 2 + 2. This is a polyno-
mial in Py. The standard basis for Py is £ = {1, x,2?}. The component vector
for p with respect to the standard basis is

[ple = (1,1,1).
However, B = {1 + 22, x,x + 22} is also a basis for Py (prove this!). Since
p(x) = 1+az+22 = 1(1 +22) + 1z + 0(z + 2?),
the components of p with respect to the basis B are
[p]s = (1,1,0).

Exercise 3.101. Let

1 1 1
U1 = 0 ) V2 = 1 5 vy = 1
0 0 1

(a) Show that B = {vy,v2,v3} is a basis for R3.
(b) Given an arbitrary vector x = (a,b,c) € R3, find [z]s. ¢

3.10 Exercises

Section 3.10 in Apostol’s text is another section of exercises. Some addi-
tional practice problems are given below.

3.6. Suppose that S and T are each subspaces of a vector space V.

(a) Define
S+T ={z+y:x€S,yeT}

Prove that S + T' is a subspace of V.

(b) Here’s a specific example to illustrate part (a). Suppose that S is the
set of vectors in R? that lie on the z-axis, and T is the set of vectors that lie
on the y-axis. Can you write S and T in set form? Find explicitly what S+ T
is.

(c) Let ¢ be a real number, and let
cS = {cx:xz e S}

Prove that ¢S is a subspace of V. Can you be more explicit—what is ¢S if
¢ # 0, and what is ¢S if ¢ = 07
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3.7. Let C'(R) denote the vector space of all continuous functions that map
real numbers to real numbers. Let fi, fo, f3 € C(R) be the continuous func-
tions whose rules are

filx) =2z -1, fa(z) = 2% — 1, fa(x) =€+ 1.

Define a function T': C(R) — R by the rule

T(f) = / f@)de,  feCR).

(a) Compute T'(f1), T(f2), and T(f3). Is T injective?

(b) Is f1 € span{f1, fa, f3}? Is {f1, f, f3} is linearly independent?
(c) Let V. ={f € C(R) : T(f) = 0}. Prove that V is a subspace of C(R).
Is span{ f1, fa, fa} CV? Is V C span{fi, f2, f3}7

3.8. (a) Show that any set of independent vectors is a basis for its span.

(b) Must a set of nonzero vectors be a basis for its span?

3.9. Let n € N be a fixed positive integer. Let P be the vector space of all
polynomials, and P,, be the vector space of all polynomials whose degree is
at most n. Let

S, = {p€Pn:p(l)=0}.
(a) Prove that S,, is a subspace of P,,.

(b) Find a set of vectors that spans S,,. Hint: Try to do the specific cases
n =1 or n =2 first.

(¢) Find a basis for S,,. What is the dimension of S,,?

(d) Let n =5 and set g(x) = (z — 1)? (#2 + 2 + 1). Show that both ¢ and
q' are in Ss.

(e) Let & = {1,x,22 23, 2%, 25} be the standard basis for P5. Compute
[q]e and [¢']e, the coordinates of ¢ and ¢’ with respect to the standard basis.
Also compute [¢q]p and [¢]5, the coordinates of ¢ and ¢’ with respect to the
basis B for S5 that you found in part (c).

3.10. Prove that {1,1 + 2,1 + 22,1 + 23,...} is a basis for the set of all
polynomials P.

3.11. For each n € N, let f, be function whose rule is f,(z) = sinnz for
x € R. Prove that {f1,..., fn} is linearly independent.
Hint: You can assume that the following calculus fact is true:

27
m#n :>/ sinmax sinnz dx = 0.
0
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3.12. Let V be a finite-dimensional vector space, and let n = dim(V).

(a) Show that V' is isomorphic to R™, i.e., show that there exists a bijection
f: R™ — V such that

Vrz,y e R", Va,beR, flaz+by) = af(x)+bf(y).

Hint: Let B = {x1,...,z,} be a basis for V. Then every vector v € V can
be written v = ¢;x1 + - - - + ¢, T, for a unique choice of scalars cq,...,c, € R.

(b) Show that the inverse function f=*: V — R™ is also an isomorphism.
Hint: We already know that f~! is a bijection, so what you have to prove
is that f~!(au+bv) = af ~(u) + bf 1 (v) for all u, v € V and a, b € R.

3.11 Inner Products and Norms

We’ve mentioned before that we can’t define infinite sums of vectors if we
don’t have some way to define a limit. Further, defining a limit requires us to
have some way of saying how close vectors are to each other—in other words,
we need to have a way to define the distance between vectors. A norm on a
vector space lets us do that.

Definition 3.102 (Seminorms and Norms). Let V be a vector space. We
call | - || @ norm on V if for each vector x € V we can define a real number
lz]| in such a way that the following hold for all all vectors z, y € V and all
scalars ¢ € R:

(a) 0 < [lz/[ < oo,

(b) |lz|| = 0 if and only if = = 0.

(b) lfexl| = lel ||, and

(¢) lz +yl < |lz]| + ||yl (this is called the Triangle Inequality). <

We call ||z|| the length of the vector z, and we say that

[ =y

is the distance between the vectors  and y. A vector x that has length 1 is
called a unit vector, or is said to be normalized.

3.11.1 Norms on R™

Here is the norm that we think of first when our vector space is R".
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Exercise 3.103 (Euclidean Norm). We usually define the length of a vec-
tor = (x1,...,2,) € R™ by the formula
Your exercise is to check that this formula does satisfy the definition of a norm.

We call this the Fuclidean norm on R™, and we call ||z — y|| the Euclidean
distance between vectors. 0O

However, the Euclidean norm is not the only norm on R”. There are
infinitely many other norms on R"™. The next exercise will give two norms on
R™ that are commonly encountered.

Exercise 3.104. For each vector x = (z1,...,2,) € R", define
[zlli = el +---+lza]  and  2]lec = max{lzi],..., |zn|}.

We call these the £*-norm and the ¢>°-norm of the vector z.
(a) Prove that || - ||; is a norm on R".
(b) Prove that || - ||eo is @ norm on R™.

(c) Find positive constants A and B such that
Alzlli < |1zl < Bllz|h for all x € R™. (3.12)

(d) Find the best possible values for A and B. In other words, find the
largest possible value of A and the smallest possible value of B so that equation
(3.12) is simultaneously valid for every vector x € R™. <

Here are some additional norms on R". We’ll state the formula for these
norms, but we won’t prove that they actually are norms. It’s not that hard
to do, but it is usually proved in a graduate real analysis course.

Ezxample 3.105. Let p be any real number that lies in the range 1 < p < 0.
For each vector © = (x1,...,x,) € R", define
lally = (l2al? +- -+ feal?) 7.

It’s easy to see that properties (a), (b), and (c) in Definition 3.102 are satis-
fied. However, it quite a bit trickier to prove that property (d), the Triangle
Inequality, is satisfied when p is not 1, 2, or oo (try it!). It can be shown that
the Triangle Inequality does hold, and once this is proved then we know that
Il - |lp is a norm on R™. We call this the ¢Z-norm on R™. You’ll note that for
p = 1, this is the same as the ¢'-norm introduced in Exercise 3.104, and for
p = 2 it is simply the Euclidean norm. For this reason, we will often denote
the Euclidean norm using the symbols || - ||2. That is, we write

lzlls = (a2 +---+22)"2 ¢
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The preceding example discussed the ¢P-norms for finite p. We defined the
{*°-norm in Exercise 3.104; it is given by the formula

IR —
The next exercise shows that || - ||oc is in some sense a limit of the norms || - ||,
as p — oo.

Exercise 3.106. Show that for every vector x € R™ we have
[2lloe = lim |zl
p—00

Hint: First prove this for vectors y that satisfy ||y|lco = 1. Then let 2 be an
arbitrary nonzero vector, and set y = x/||z|00.

The following exercise may give some insight into these norms.

Exercise 3.107. We will consider vectors in R? for this exercise. Plot the
following sets (“C” is for “circle” and B is for “ball”).

(a) C={z e R?:|jz]y =1} and B = {x € R?: ||z||; < 1}.
(b) C={z € R?:|jz]]a =1} and B = {z € R? : ||z]|» < 1}.
() C={r€R?: ||z]lo =1} and B={z € R? : |7]|0c < 1}. ¢

3.11.2 Norms on ¢!, ¢2, and £

Back in Exercise 3.23, we introduced some vector spaces whose elements
were infinite sequences of real numbers. First, we looked at the set of all
possible infinite sequences:

S = {x:x: (z1,22,...) where z1, 29, - GR}.

Then we took the subset of S that contains the “summable” sequences:

= {x:(xl,xg,...)eS : Zxk|<oo}.
k=1

For example, the sequence x = (1, %, %, ... ) belongs to £}, but = = (1, %7 %7 o)
does not. We saw that ¢! is a subspace of S. The next exercise asks you to

show that we can define a norm on ¢!,

Exercise 3.108. Show that

oo

lzlls = )l

k=1
is a norm on the space ¢*. ¢
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We will also consider the spaces ¢? and £*° that are defined by

62 = {$:({E1,.’E2,...)ES : Z|$k|2<00}

k=1
and
> = {x = (21,22,...) €S @ sup|zi| < oo}.
k
We have to use a sup and not a max in the definition of ¢*° because a bounded
sequence doesn’t have to have a maximum element. For example, the sequence

z = (3:%%8)

belongs to £°°, but there is no maximum component. Although we won’t do
it, you can similarly define spaces /P for each index p in the range 1 < p < co.

Exercise 3.109. (a) Prove that

o] 1/2
ez = (Zw)
k=1

is a norm on £2. What is the ¢?>-norm of the vector z = (1, %, %,

(b) Prove that

L)

=

[2]loc = sup |z
k

is a norm on £°°.
(c) Prove that £* C (2 C (.

(d) Prove that ¢! C ¢2 C ¢°°.

Hint: Since you already did part (c), all you need to do is show that there
exists a vector = that belongs to ¢2 but doesn’t belong to ¢!, and similarly
there is a vector y that belongs to > but not £2.

(e) Prove that for every vector x € ¢! we have
[#]loe < llzll2 < 2]l
However, prove that there is no finite real number C' such that
2|1 < C|z|le for all x € £*.

That is, although the inequality on the line above can hold for some particular
vectors in /1, there’s no way that it can hold simultaneously for all vectors in
o,

(f) Prove that || - ||2 is a norm on the space ¢!, and likewise prove that
| [loo is a norm on £

Prove that || - ||; is not a norm on either ¢ or /. ¢
g



3.11 Inner Products and Norms 65

3.11.3 Norms on CJ0,1]

We can also define norms on spaces of functions. We will define most of
these in terms of integrals, so for simplicity we will restrict our attention to
spaces of continuous functions, because we know from MATH 1502 that we
can integrate continuous function. In other words, we know that the Riemann
integral of any continuous function exists. The Riemann integral of some dis-
continuous functions does exist, but there are many discontinuous functions
whose Riemann integral does not exist.

In graduate real analysis you will learn how to integrate functions that are
not continuous. This is not as easy as it may sound—it takes a considerable
amount of work to define the integral of more general functions and to derive
the properties of the integral—but the result is a very powerful and useful
theory of integration. This Lebesgue integral is the foundation of almost all of
modern analysis.

However, we’re not ready for the Lebesgue integral, so we’ll stick to the
Riemann integral, and we’ll consider the vector space C[0,1] that consists
of all the continuous functions whose domain is the interval [0, 1]. The next
exercise gives some norms on this space.

Exercise 3.110. (a) The L'-norm of a function f € C[0,1] is defined by

Il = / ()] d.

Prove that || - ||1 is a norm on C]0, 1].

(b) The L%-norm of a function f € C[0,1] is defined by

i = ( 1|f(w)|2dw>l/2 -(/ 1f(w)2dw)l/2-

Prove that || - ||2 is a norm on C]0, 1].

(¢) The L*°-norm of a function f € CI0, 1] is defined by

[flloe = oS |f ()
Prove that || - [|oo is a norm on C10, 1].
(d) Prove that for each function f € C0,1] we have
£l < 1 lloo-
Challenge: Prove that we actually have

[l < Afflz < oo
(©2011 Christopher Heil
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Compare this to the inequality you obtained in part (e) of Exercise 3.109!
(e) Prove that there is no finite real number C such that
[flle < Clfl1 for every f € C[0,1].
Again, compare this to the part (e) of Exercise 3.109. <
Can you guess how to define the LP-norm of a function f € CI0,1]?

Exercise 3.111. (a) Find the L', L?, and L* norms of each of the vectors
1,z,22,23, ... in C[0,1].

(b) Find the L2-distance between z™ and z™ in C[0,1]. That is, given
integers m, n > 0, find

1 1/2
|l — a2 = </0 (xmx")de) . O

Sometimes we use domains other than [0, 1]. In this case we just change
the limits of integration appropriately. Here’s an example.

Exercise 3.112. Let f(z) = sinz and g(z) = cosz. These vectors belong to
the space C0, 27]. Find the Euclidean lengths of f and g in this space, i.e.,

find
o 1/2 o 1/2
1l = ( / f<x>|2dx) _ ( / smzxdx)
o 1/2 o 1/2
||9||2 = </0 |9(1’)|2d33) = </0 cos2a:d:1c>

Hint: First find the value of

and

IF115 + [lg1l3-

jus

Then show that ||f[|3 = ||g||3 (make the change of variable y =2 — Z). ¢

3.11.4 Balls

You should think about what a “ball” in C]0, 1] looks like. Here’s an ex-
ercise that might help with that.

Exercise 3.113. For this exercise we’ll consider the L>-norm on C[0, 1]. The
distance between two functions f and g in this norm is || f — g||c. In particular,
the distance between f and the zero function 0 is the number ||f — 0l =
I fllcc- Let B be the set of all functions that are within distance 1 from the
zero vector:

B = {feC0,1]:[flle <1}.

(©2011 Christopher Heil
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The letter B is for “ball,” because the set B is really the open unit ball
centered at the origin in the space C10, 1].

(a) Try to give an “explicit” description of the functions in B. That is,
how can I tell just by looking at a function f whether it belongs to the ball B?

(b) Now let g be some function in C[0, 1]. Let B be the set of all functions
that are within a distance 1 from g:

B = {feC0,1]:|f - gl <1}.

This set is the open ball of radius 1 centered at g. Give an “explicit” de-
scription of the functions in B. That is, how can I tell just by looking at a
function f whether it belongs to the ball B?

Here’s the formal definition of an open ball in a normed vector space.

Definition 3.114. Let || - || be a norm on a vector space V. Given a vector
x € V and given a positive real number r > 0, the open ball centered at x with
radius r is the set

B.(z) = {y eViz—vyl < 7‘}.

That is, the open ball B,.(x) consists of all vectors y that lie within a distance r
fromz. <

Once we have open balls, we can define open sets.

Definition 3.115. Let || - || be a norm on a vector space V. We say that a set
U CV is open if

Vo €U, 3Ir>0suchthat B,.(x) CU.

That is, U is open if each point in U can be surrounded by an open ball that
is entirely contained in U. <

Note that although we called an open ball “open,” we haven’t yet proved
that it actually satisfies the requirements of Definition 3.115. That’s your next
exercise.

Exercise 3.116. Let || - || be a norm on a vector space V. Choose any vector
x € V and any r > 0. Show that B,(z) is an open set.

Hint: You must show that if y € B,(x), then there is some s > 0 such that
By (y) C B,(x). To find s, pretend that you were working with vectors in R2,
draw a picture, and try to figure out what s has to be (it will be determined
both by the value of r and the value ||z — y||). Because we have the Triangle
Inequality, this is precisely the value of s that you will need, no matter what
the vector space actually is. You still have to prove that this value of s works,
i.e., you have to prove that B(y) is a subset of B,.(x). So, once you’ve gotten
your guess for s, you must choose an arbitrary vector z € B;(y) and prove

that z € B.(z). <
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Here are some more exercises about open sets.

Exercise 3.117. Let || - || be a norm on a vector space V. Give a precise
definition of what it means for a set to not be open. That is, complete the
following: A set £ C V is not open if Y

Exercise 3.118. Let || - || be a norm on a vector space V.

(a) Suppose that I is any set, and for each ¢ € I we have an open set
U; C V. Prove that the union of these open sets is open. That is, prove that

U U
=
is open. Thus, the union of any collection of open sets is open.

(b) Prove that the intersection of finitely many open sets is open. That is,
suppose that Uy, ..., U, are open, and prove that

UyN---NU, is open.

(c) Prove by example that the intersection of infinitely many open sets
need not be open. That is, give an example of a normed vector space V and
open sets Uy, Us, ... such that

W= N Uk
k=1

is not open. Be careful—be sure to prove that your set W is not open, don’t
just say that it doesn’t look like it’s not open.

(d) Prove that ) and V are both open sets.

(e) Suppose that U is a nonempty open set. Prove that U is the union of
some collection of open balls.
Hint: One open ball for each element of U. <

3.11.5 Inner Products

Some (but not all!) norms are associated with an inner product. The defi-
nition of an inner product is inspired by the properties that the dot product
of vectors in R™ possesses. An inner product is a function of two vectors—
for each pair of vectors it gives a real number, and this number must satisfy
certain properties. Here is the definition.

Definition 3.119 (Inner Product). Let V be a vector space. We call (-, )
an inner product on V if for each pair of vectors x, y € V we can define a
real number (z,y) in such a way that the following hold for all all vectors z,
Yy, z € V and all scalars ¢ € R:

(©2011 Christopher Heil
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(

(z,y) = (y,z), and
(d) (x4 y,2) = (x,2) + (y, 2).
(e) (cx,y) = c(z,y).

A vector space that has an inner product is called an inner product space
or a Fuclidean space (Apostol prefers the term Euclidean space). <

Sometimes other symbols are used to denote an inner product. For ex-
ample, Apostol likes to write (z,y) instead of (z,y). It doesn’t matter what
symbols are used, as long as the five properties given in the definition of an
inner product are satisfied (Apostol lists the properties in a slightly different
way, but you can check that they are the same properties that I give).

Some changes are need if we want to work with complex scalars instead of
real scalars. In that case, the symmetry condition given in property (c) has
to be changed to (z,y) = (y,z), i.e., a complex conjugate is introduced when
the ordering is interchanged in the inner product. We will only consider real
scalars.

Eventually, we will prove that every inner product gives us a norm. This
associated norm will be given by the rule

Jzl| = (z,2)"? = /(z,2), zeV.

We will call this the induced norm, but you should note that we haven’t yet
proved that it actually is a norm!

The dot product is the prototypical example of an inner product, and we
can easily see that the norm induced from the dot product really is a norm.

Exercise 3.120. (a) The dot product of two vectors z = (z1,...,2,) and
Yy = (y17"'ayn) in R™ is

n
Ty = Tyt Tl = Y Tkl
k=1

Show that (z,y) = x - y defines an inner product on R™. Note that the norm
induced from the dot product is

lall = (@) = (af+ - +a2)"",
which is precisely the Euclidean norm on R". We therefore say that the Fu-
clidean norm on R™ is induced from the dot product.

(b) This part will show that the dot product is not the only inner product
on R™. We will modify the dot product by introducing some “weights.” Let
wy, ..., w, > 0 be fixed positive scalars. Show that
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<.13,y> = W1T1Y1 + - + WpTnYn, T,y € R",
defines an inner product on R”.

(c) This part requires a little knowledge about matrices. We say that an
nxn matrix A is positive definite if Ax-x > 0 for each nonzero vector x € R™.
Prove that if A is a positive definite matrix, then

(z,y) = Az -y, z,y € R,

defines an inner product on R™. Show that if A is a diagonal matrix that has
all positive diagonal entries, then A is a positive definite matrix, and the inner
product that we just defined coincides with the type of inner product given
in part (b).

(d) This part is more challenging. Let (-,-) be an arbitrary inner product
on R™. Show that there is some positive definite matrix A such that

(x,y) = Az -y, for all z,y € R™. O
You should prove that every inner product has the following properties.

Exercise 3.121. Let (-,-) be an inner product on a vector space V. Prove
that the following statements hold.

(a) (ax + by, z) = a{x,z) + b{y,2) for all x, y, z € V and a, b € R.
(b) (z,ay + bz) = alx,y) + b{z,z) for all z, y, z € V and a, b € R.
(¢c) {(x,0) =0=(0,z) for all z € V.
(d) For all z, y, z, w € V and a, b, ¢, d € R we have
(ax 4+ by, cz + dw) = ac(x,z) + ad (x,w) + be {y, z) + bd (y, w).
This is the Distributive Law for the inner product. <>

Here is something that every induced norm must satisfy (we’re doing this
a bit out of order since we haven’t yet proved that the induced norm actually
is a norm, but that doesn’t matter for this exercise).

Exercise 3.122. Let (-,-) be an inner product on a vector space V, and let
|z|| = (x,2)'/? be the induced norm. Prove that the following equality must
hold for all vectors z, y € V:

lz+yl1 + llz =yl = 2(/l=[* + yl*).-
This is called the Parallelogram Law. <

Thus, whenever we have an inner product, the induced norm must satisfy
the Parallelogram Law. Consequently, if we're given a norm that doesn’t sat-
isfy the Parallelogram Law, then it can’t be induced from some inner product.
Here’s an exercise that makes this precise.
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Exercise 3.123. (a) Suppose that ||-|| is a norm on a vector space V. Suppose
that this norm does not satisfy the Parallelogram Law, i.e., there exist two
vectors w, z € V such that

lw+ 2[* + lw — 2]* # 2(lwl|® + [12]?).

Show that there is no inner product (-,-) on V that induces this norm. That
is, there is no inner product on V that satisfies

(z,2)Y? = ||z, for all z € V.

(b) Show that the ¢!-norm on R™ is not induced from an inner product.
That is, show that there is no inner product on R™ that satisfies

<:£,17>1/2 = |lzli = |z + -+ |zal, rz e R™

Hint: Use part (a). Choose two “easy” vectors w, z and test whether the
¢'-norm satisfies the Parallelogram Law for those particular vectors.

(¢) Show that the £*°-norm on R" is not induced from any inner product
on R™.

(d) Show that the £>-norm on R" is induced from an inner product (it’s
not enough to show that the Parallelogram Law holds!).
Hint: We've already done it.

Here is a similar exercise for the vector space £2.

Exercise 3.124. (a) Given any two infinite sequences x = (z1,x2,...) and
y=(y1.92,...) in 2, define

oo
<£L’, y> = Z TrYk.
k=1

Show that this defines an inner product on ¢2. What is the induced norm—is
it the £2-norm or is it something else?

Challenge: How do you know that the series defining (x,y) actually con-
verges? We'll take this for granted for now, but it is a consequence of the
Cauchy—Schwarz Inequality, which we will prove soon.

(b) Show that the inner product defined in part (a) is an inner product
on the space ¢!, as well as being an inner product on ¢2. What is the induced
norm? (Note that it’s not the £!-norm.)

Hint: This is easy, because an earlier exercise showed that ¢! is a subspace
of 2.

(c) Show that there is no inner product on ¢! whose induced norm is the
norm. &
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Here’s one more exercise, for the space C10, 1].

Exercise 3.125. (a) Given functions f, g € C[0, 1], show that

(f.9) = / f(x) g(x) dx (3.13)

is an inner product on C[0, 1]. Show that the induced norm is the L?-norm.

(b) Show that there is no inner product on C[0, 1] whose induced norm is
the L'-norm.

Hint: Choose two “easy” functions, but not too easy—don’t choose con-
stant functions, for example.

(c) Show that there is no inner product on C[0, 1] whose induced norm is
the L>®-norm. <

In summary, induced norms are special. Not every norm is induced from
an inner product. If you have an inner product, then you’ll have a norm (the
induced norm), but if you’re given a norm, there may or may not be an inner
product associated with it.

3.11.6 Cauchy—Schwarz and the Triangle Inequality

Before we can prove that the induced norm really is a norm, there’s an
inequality that we have to prove first. This inequality is called the Schwarz In-
equality, the Cauchy—Schwarz Inequality, or the Cauchy—Bunyakovski-Schwarz
Inequality. The most accurate name is the longest one, though Apostol prefers
to call it Cauchy—Schwarz. (Please note that there is no “t” in Schwarz’s
name.)

Theorem 3.126 (Cauchy—Schwarz). If (-,-) is an inner product on a vec-
tor space V, then

o) < llzllllyll = (@2)? (y,0)%, zyeV.
This is called the Cauchy—Schwarz Inequality.

Proof. Choose any particular vectors z, y € V. If y = 0 then we have both
(z,y) = 0 and |ly|]| = 0, so we are done in this case. Therefore, we can concen-
trate on the case y # 0.

Using the distributive law, for each real number ¢ we have

0

IN

l = eyll?

= {z—cyz—cy)

(©2011 Christopher Heil
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(x,2) = c(z,y) — c(z,y) +(y,y)
= Jlz]|* = 2c(z, y) +  yl*.
This is true for every real number c. In particular, it is true for the real number

(z,y)
[ylI>

Substituting this value for ¢, we obtain

0 < [lal* = 2¢(z, y) + c* |lyll?

(z,y) (z,y)?
= ot - S0
FE

Rearranging this, we magically get
(@, y)? < Izl lly)?,
so the result follows by taking square roots. 0O

Let’s see what Cauchy—Schwarz tells us about some particular vector
spaces.

Example 3.127. Let x = (x1,22,...) and y = (y1,¥2,...) be vectors in £2. We
saw earlier that

o
<:177 y> = Z TrYk
k=1

defines an inner product on ¢2. The induced norm is the ¢?-norm:
00 1/2
lallz = (z,2)"/* = (Z xk) |
k=1
The Cauchy—Schwarz Inequality tells us that
[z, 9)| < llzll2 llyll2-

Writing this out in terms of components, this is

oo ) 1/2 , o0 1/2
Son| < (X)) (Xat)
k=1 k=1

k=1
You can prove this directly, although now that we know that Cauchy—Schwarz
holds, we don’t have to.
Challenge: Can you explain why this inequality implies that if  and y are
in /2, then the sum defining (z,y) converges? <
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Ezample 3.128. Let f and g be two functions in C[0, 1]. We saw earlier that

qﬂ>:.4¢ﬂmg@wm

defines an inner product on C[0, 1], and the induced norm is the L?-norm,

which is ) 12
= 2d .
T (Atﬂm x)

The Cauchy—Schwarz Inequality tells us that

(£l < fll2 llgll2-

Writing the preceding line out in terms of function values, it turns into the

following inequality:
1 1/2 1 1/2
< (/ f(z)? dx) (/ g(x)? dx) . O
0 0

Now that we have the Cauchy—Schwarz Inequality, we will use it to prove
that the induced norm really is a norm.

[ 1@ as

Theorem 3.129. Let (-,-) be an inner product on a vector space V. Then the

induced norm,

1/2
Y

2] = (z,2) zeV,

is a norm on V.

Proof. We have to verify that each of the four properties of a norm that are
given in Definition 3.102 are satisfied.

Property (a). By definition of an inner product, we have 0 < (z,z) < o0
for each x € V. Taking square roots, it follows that 0 < ||z|| < oo for each
vector x € V. This establishes that statement (a) of Definition 3.102 holds.

Property (b). Suppose that ||z|| = 0. Squaring both sides, it follows that
(w,2) = [|lz]* = 0.

Therefore, by definition of an inner product, we have x = 0. This establishes
that statement (b) of Definition 3.102 holds.

Property (c). Choose any vector x € V and any scalar ¢ € R. Then we
have

1/2 1/2
lez|| = (ex,ca)!/? = ((z,2))"" = (ll=]*)"" = el |-
Hence statement (c) of Definition 3.102 holds.

Property (d). Choose any two vectors x, y € V. Then we have
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lz+yl* = (@+y,2+y)
= (z,z) + (z,y) + (y,z) + (y,y) Distributive Law

= |lz||* + 2(z, y) + +|jy|I? Definition

< )+ 2|z yll + +ly|? Cauchy-Schwarz
2

= (llzll + llyll)™

Taking square-roots, it follows that ||z+y|| < ||z||+||y||. Therefore the Triangle
Inequality holds, and this is statement (d) of Definition 3.102. O

3.12 Orthogonality

Two vectors in R™ are perpendicular if their dot product is zero. We extend
this notion to any vector space that has an inner product.

Definition 3.130. Let (-, ) be an inner product on a vector space V.
(a) We say that two vectors x and y are orthogonal or perpendicular if
(z,y) = 0. In this case we write z L y. That is,
xly < (z,y)=0.

(b) We say that two vectors « and y are orthonormal if (z,y) = 0 and
llz|l = llyll = 1. That is, orthonormal vectors are unit vectors that are per-
pendicular. <

Using this definition, the zero vector is orthogonal to every other vector,
because (x,0) = 0 for every x € V. We might not like this, but this is what
Definition 3.130 says, so we have to accept it. If we want to talk about per-
pendicular vectors but exclude the zero vector, we have to say something like
“Let «, y be nonzero orthogonal vectors.” On the other hand, orthonormal
vectors must be nonzero, because they are unit vectors.

Here are some simple, but useful, facts.

Exercise 3.131. Let (-,-) be an inner product on a vector space V.
(a) Let = be a vector in V. Show that
rlz <<= x=0.

That is, the only vector that is orthogonal to itself is the zero vector.

(b) Show that the only vector that is orthogonal to every vector in V is
the zero vector. That is, prove that

zlyforeveryyeV <«<— x=0. &
(©2011 Christopher Heil
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We often have more than two vectors, so we extend the definition of or-
thogonality and orthonormality to larger sets. For simplicity, we will state the
definition for countable (listable) sets, but similar definitions hold for arbitrary
infinite sets.

Definition 3.132. Let (-, ) be an inner product on a vector space V.

(a) We say that {z1,z2,...} is an orthogonal set if (x,,, ) = 0 whenever
m # n.

(b) We say that {z1,x2,...} is an orthonormal set if it is an orthogonal
set, and furthermore we have ||z,| =1 for every n. <

Here’s a convenient way to reword the definition of orthonormality.

Exercise 3.133. (a) Show that {z1,x2, ...} is an orthonormal set if and only
if
1, m=n,

v s EN, mydn) = .
m,n (T, Tn) {07 mtn.

(b) Suppose that {x1,xs,...} is an orthogonal set. Show that if x,, # 0

for every n, then
(et e
[E3Y /N E>Y A

is an orthonormal set. We say that we obtain this orthonormal sequence by
normalizing the sequence {x1,xo,...} (i.e., normalizing is simply dividing a
vector by its length to obtain a unit vector). <

Here are some examples.

Exercise 3.134. (a) Consider the vector space C[0, 27], where the inner prod-

uct is
27

(f,9) = fa) g(x) da.

0

Show that {1,sinz,cosz} is an orthogonal family. Is it orthonormal? If not,
use Exercise 3.133 to construct a related orthonormal set.

(b) Now consider the space £2, whose elements are infinite sequences. Ex-
hibit an infinite orthonormal set {z,xo,...} in 2.
Hint: What are the “simplest” vectors in £2?

(c) Is the set of monomials {1,z,22, ...} an orthogonal set in C[0,1]? If
we define the angle between =" and z™ to be the number 6 that satisfies

(x™, ™)

cos) = —————
[P EA PN

then what is the angle between ™ and x"7 Are these two functions “close”
to being orthogonal when m and n are large, or are they “far” from being
orthogonal?
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(d) Repeat part (c), but use the domain [—1,1] instead of [0, 1]. In par-
ticular, show that 1 and 22 are orthogonal to x, but 22 is not orthogonal
to 1. How would you picture this in a 3-dimensional diagram? Can you find a
first-degree polynomial p such that {1,p, 2} is an orthogonal set?

(e) Challenge: Use trig identities to extend part (a). Show that
{1, sin z, cos x, sin 2z, cos 2z, sin 3z, cos 3z, ... }

is an orthogonal set in C[0, 27].

Hint: This is much easier to do if you consider the complex-valued functions
e = cosnx + isinz. Compute the inner products (e™® ¢i"*) by using a
u-substitution (u = i(m — n)z). This shows that {€!"?}, cz is an orthogonal
set. Then consider the real and imaginary parts to show that the set of sines

and cosines is orthogonal. <

The Pythagorean Theorem tells us something about orthogonal vectors in
R"”. Because inner products have the same properties that the dot product
has, we have a Pythagorean Theorem in any inner product space.

Exercise 3.135 (Pythagorean Theorem). Let (-,-) be an inner product
on a vector space V.

(a) Given vectors z, y € V, prove that
vly <= lz+yl® = |z +lyl*

Mlustrate via a diagram why this is the “Pythagorean Theorem.”

(b) Use induction to extend part (a) as follows: Show that if zq,...,2,
are orthogonal vectors, then

n 2 n
Do = D Mol
k=1 k=1

How does this simplify if 1, ..., z, are orthonormal?

3.12.1 Orthogonality (almost) implies Independence

Any set that includes the zero vector is dependent. Since the zero vector
is orthogonal to every vector, an orthogonal set can be dependent. However,
we will prove that a set of nonzero orthogonal vectors must be independent.

Theorem 3.136. If {x1,...,x,} is a set of nonzero orthogonal vectors in an
inner product space V, then {x1,...,x,} is independent.

(©2011 Christopher Heil
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Proof. Suppose that x1,...,x, are nonzero, orthogonal vectors. Suppose that
c1x1 + -+ -+ cpx, = 0 for some scalars ¢y, ..., c,. We must show that each ¢
is zero.

We begin with ¢;. Since the inner product of the zero vector with any
other vector is zero, we have (0,21) = 0. Substituting c;21 + -+ + ¢z, = 0,
we get

0 = <O,3§‘1>
= (c121 + oo+ + Cuy, T1)
= c1(z1, 1) + 2w, 1) + - - + cn (T, T1)

= Cl.l+02.0+...+cn.0

= (1.
Hence ¢; = 0. We repeat the process, using the vectors xo,...,x, in turn to
get cg =-+- =¢, = 0. Hence {z1,...,2,} is independent. O

The proof we gave is not the only one. Try the following: Suppose that
c1z1 + -+ cpxy, = 0, and then compute

(121 4 - 4 Cntn, ATL + -+ + CTy).

You should be able to show from this that every ¢ is zero. Yet another
approach is to apply the extended form of the Pythagorean Theorem derived
in part (b) of Exercise 3.135 to show that ¢, = 0 for every k. Try doing both
of these!

Here’s an extension to infinitely many vectors.

Exercise 3.137. Suppose that {x1,22,...} is an infinite set of nonzero or-
thogonal vectors in an inner product space V. Show that {x,z2,...} is inde-
pendent.

3.12.2 Orthonormal Bases

The best situation of all is when we have an orthonormal set of vectors
that is also a basis for V.

Definition 3.138. If B = {z1,...,2,} is an orthonormal set of vectors that
is a basis for an inner product space V, then we call B an orthonormal basis
(ONB) for V. <

Exercise 3.139. (a) Show that the standard basis is an orthonormal basis
for R™.

(b) Find an orthonormal basis for R? that is different from the standard
basis. <
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If you have a basis, then you know that every vector x can be written as
some unique linear combination of the basis vectors. The nice thing about
an orthonormal basis is that you know exactly what the scalars in the linear
combination have to be. This is part of the next exercise.

Exercise 3.140. Suppose that {z1,...,2,} is an orthonormal basis for an
inner product space V.

(a) Prove the Plancherel Equality:
lz)* = > [w,zn)?,  zeV.
k=1

(b) Prove the Parseval Equality:

n
E T, Tp) (Tn, Y).
k=1

(¢) Prove that the unique way to write a vector x € V as a linear combi-
nation of xy,...,x, is

n

(x,xk) &
k=1

The following exercise pushes this a bit further.

Exercise 3.141. Suppose that {z1,...,2z,} is an orthonormal set of vectors
in an inner product space V' (but you don’t know whether they are a basis
for V). Prove that the following statements are equivalent (each implies the
others).

(a) {z1,...,z,} is an ONB for V.
(b) n = dim(V).

(c) For each vector « € V there are scalars ¢y, ..., ¢, such that

n
= E CrTL.
k=1

(d) For each vector x € V we have
n
- 3 (o
k=1

(e) For each vector x € V' we have
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n
2l = D o)l
k=1

(f) For each pair of vectors z, y € V' we have

n

(x,y) = Z<$7xn> <xmy>~ &

k=1
3.13 Exercises

Section 3.13 in Apostol contains some exercises for you to work. Here are
some additional exercises.

3.13. Parts (a) and (b) of this problem were appeared in an earlier problem,
but we repeat them here, and give some additional parts. Let V be a finite-
dimensional vector space, and let n = dim(V').

(a) Show that V' is isomorphic to R™, i.e., show that there exists a bijection
f: R™ — V such that

Vrz,y e R", Va,beR, flaz+by) = af(x)+bf(y).

Hint: Let B = {x1,...,z,} be a basis for V. Then every vector v € V can
be written v = ¢;x1 + - - - + ¢, T, for a unique choice of scalars cq,...,c, € R.

(b) Show that the inverse function f~1: V — R™ is also an isomorphism.
Hint: We already know that f~! is a bijection, so what you have to prove
is that f~!(au+bv) = af ~(u) + bf 1 (v) for all u, v € V and a, b € R.

(¢) Define a function (-,-) on V' x V by the rule
(u,v) = f~1u)- f1(v), for u,v €'V,

where the right-hand side of the equation above is the dot product on R™.
Show that (-,-) is an inner product on V.

(d) Now take the particular case where V' = P,,_1, the space of polynomials
of degree at most n — 1. We know that (f,g) = fil f(z) g(x) dx defines one
inner product on P,,_;. Is this the same inner product as the one defined in
part (c)?

3.14. Let B = {v1,...,v,} be an orthonormal basis for R” (not necessarily

the standard basis!). Given z € R™, find [z]p (the coordinate vector for z with

respect to the basis B). Your answer should be in terms of x and vy, ..., v,.
Note: The inner product on R"” is the usual dot product.
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3.15. Let {z1,x2,...} be an orthonormal set of vectors in an inner product
space V. Find the distance between z,, and x,, i.e., find ||z,, — z,|| when
m # n.

3.16. Let 1,22, ... be vectors in a normed space X. We say that the infinite
series Y 7 | @y converges if there is a vector x € V such that

N
xr — E Tk
k=1

a) Suppose that the two series "2 | 7) an ° | Y both converge. Show
S that th ies Yooy d 77 | yk both Sh
that >y~ (zx + yx) converges.

lim = 0.

N—o0

(b) Suppose that Y p-; zx converges. Show that the sum of this series is
unique, i.e., if x and y both satisfy
N
li - =0

and

N
lim — g T
N Yy k

k=1

then we must have x = y.



